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Abstract. We develop an axiomatizatic generalization of the classical, motivic, and equivari-

ant stable homotopy categories. In this general setting we: explore graded anticommutativity
properties of stable homotopy rings, develop a notion of cellularity, prove an analogue of the

Künneth theorem and the universal coefficient theorem, and construct a version of the dual

E-Steenrod algebra and formulate the precise in which sense it is a graded anticommutative
Hopf algebroid. All of our work will culminate in the construction of a (homological) E-Adams

spectral sequence, and we characterize its E2 page in terms of Ext of comodules over the dual

E-Steenrod algebra.
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1. Introduction

Arguably the most famous problem in modern homotopy theory is computing the stable ho-
motopy groups of spheres. This is an extremely difficult problem. State of the art computations
by Isaksen, Wang, and Xu ([13]) have only computed these groups up to dimension 90. The key
tool used for these computations is the Adams spectral sequence, of which there are many differ-
ent flavors. Given a flat, cellular commutative ring spectrum E, the E-Adams spectral spectral
sequence is Z2-graded and has signature

Es,t2 (X,Y ) = ExtsE∗(E)(E∗(X), E∗+t(Y )) =⇒ [X,Y ∧
E ]∗.

Here Ext is taken in the category of Z-graded comodules over the dual E-Steenrod algebra. The
spectral sequence was originally constructed in 1958 by Frank Adams in the case E = HFp and
X = Y = S ([2]). While a great deal may be ascertained about the stable homotopy groups
of spheres with just this spectral sequence, more is needed in order to compute beyond the first
twenty or so stable stems.

In 1998, Voevodsky introduced concepts from homotopy theory into algebraic geometry, cre-
ating a new field called motivic homotopy theory ([29]), also called A1-homotopy theory. Rather
than working with topological spaces, in motivic homotopy theory, the fundamental objects are
varieties over some base scheme S . The theory goes quite far, and one may construct a sym-
metric monoidal stable model category of motivic spectra over S , whose homotopy category is
the motivic stable homotopy category over S .1 Later in 2009, Dugger and Isaksen constructed
a motivic version of the Adams spectral sequence in the motivic stable homotopy category ([9]).
Given a flat, cellular motivic commutative ring spectrum E, the motivic E-Adams spectral spec-
tral sequence is Z3-graded and has signature

Es,t,u2 (X,Y ) = ExtsE∗,∗(E)(E∗,∗(X), E∗+t+s,∗+u(Y )) =⇒ [X,Y ∧
E ]∗,∗

(where here Ext is taken in the category of Z2-graded left comodules over the motivic dual E-
Steenrod algebra). Dugger and Isaksen construct the spectral sequence only for the case E = HF2

and X = S. Furthermore, they leave out many details of the construction, leaving them for the
reader to fill in. The work we present here was originally conceived with the aim of filling in
these details and constructing the spectral sequence in the more general form given above. More
general results were achieved upon pursing this aim, and the scope of our results have changed
significantly.

1For a review of these constructions, we refer the reader to Section 2 of [30].
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1.1. Goals & Outline. The two main goals of this paper are as follows:

(1) Provide an axiomatic generalization of classical, motivic, and equivariant stable homotopy
categories.

(2) Provide a reference for the full and explicit details of the construction of the classical,
motivic, and equivariant E-Adams spectral sequences, the characterization of their E2

pages, and some basic facts about their convergence.

The idea for the generalization came to the author after reading the pair of papers [7] and [10],
which roughly discuss graded commutativity properties of what one might call “sub-Picard graded
symmetric monoidal categories”.

We warn the reader that, as a result of goal (2), this document is primarily expository in nature.
Furthermore, it aims to be a mostly self-contained reference, which accounts for its significant
length. Indeed, a large portion of the results contained here constitute only slight generalizations
of results already found elsewhere in the literature. Nevertheless, we believe the approach outlined
here is valuable even beyond serving as a self-contained reference, as we do make several original
innovations:

(1) We provide a general construction of the Adams spectral sequence which equally applies to
the classical, motivic, and equivariant stable homotopy categories. This is quite flexible,
for example, in the G-equivariant case: we can construct a version of the spectral sequence
which intrisically keeps track of the RO(G) grading, or, alternatively, could be constructed
to be graded by the entirety of the Picard group of the equivariant stable homotopy
category. In particular, we give a more general version of the motivic Adams spectral
sequence than that found in the literature.

(2) We develop the notion of a “tensor-triangulated category with sub-Picard grading,” which
roughly is a category which is graded by some abelian group, symmetric monoidal, and
triangulated, all in a compatible way. Along with a few extra categorical conditions,
such categories provide a surprisingly powerful axiomatization of the (classical, motivic,
equivariant) stable homotopy category, and a shockingly large amount of the theory
therewithin can be carried out entirely in this framework.

(3) We provide an encompassing notion of “cellularity” in a tensor triangulated category
with sub-Picard grading, which parallels the same notion in the motivic stable homotopy
category.

(4) We work out some of the graded-commutativity properties of π∗(E) for a commutative
monoid object (E,µ, e) in a tensor triangulated category with sub-Picard grading. In
particular, we provide a complete picture of the preliminary analysis given in [7, Remark
7.2].

(5) We suggest a definition for the correct notion of an “anticommutative A-graded ring” for
a general abelian group A. In particular, we suggest a new candidate for the category in
which the motivic Steenrod algebra is a Hopf algebroid/co-groupoid object.

This paper should be viewed as a natural successor to the nLab page on the Adams spectral
sequence ([25]) written by Urs Schreiber. Indeed, this paper tells mostly the same story told
there, albeit in a more general setting. Along the way, we fill in many of the details not contained
there. Furthermore, we are of the opinion that the more general and categorical approach can
serve to clarify and even “trivialize” many of the proofs and ideas involved here. It is the hope of
the author that this document can serve as an equally valuable resource for those first learning
classical, motivic, and equivariant stable homotopy theory.

We give an outline of the structure of the paper. In Section 2, we start by giving the re-
quired background for the paper, and we give a brief review of coherence for symmetric monoidal
categories. We then develop the notion of tensor triangulated categories with sub-Picard grad-
ing, which will be defined in Definition 2.3. We will discuss Dugger’s paper [7] which concern
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“sub-Picard graded symmetric monoidal categories”, and we will apply some of the results from
therewithin to our situation. Then we will fix such a category SH (with a few extra categorical
conditions), which acts as an axiomatic model for the classical, motivic, and equivariant stable
homotopy categories. In this category, we will be able to develop much of the theory of stable ho-
motopy theory, in particular, we will be able to formulate the notion of A-graded stable homotopy
groups π∗(X) of objects X in SH, as well as homology, and cohomology represented by objects in
this category. We will show that (co)fiber sequences (i.e., distinguished triangles) in SH give rise
to long exact sequences of homotopy groups, and that SH is equipped with an A-indexed family
of “suspension” and “loop” autoequivalences.

After just this first section, we will actually have all the data needed to construct the Adams
spectral sequence, yet we will not actually do so until the very end in Section 7. The goal of
this spectral sequence will be to compute the A-graded abelian groups of stable homotopy classes
of maps [X,Y ]∗ between objects X and Y in SH, by means of algebraic information about the
E-homology of X and Y . This is useful because in practice, for a suitable homology theory E, it
is often easier to compute E-homology than it is to compute general hom-groups. To achieve this
goal, Sections 2–6 will be devoted to formulating suitable conditions on E, X, and Y under which
enough structure may be captured on the E-homology groups E∗(X) and E∗(Y ) that algebraic
information about homomorphisms between them gives suitable information about the groups
[X,Y ]∗.

In Section 3, we will formulate the notion of cellular objects in SH. Intuitively, these are the
objects in SH which may be constructed by gluing together copies of spheres. In the case SH is the
motivic stable homotopy category, these objects will correspond to the standard notion of cellular
motivic spaces. In the case SH is the classical stable homotopy category, every object will turn out
to be cellular, as a consequence of the fact that every space is weakly equivalent to a generalized
cell complex. The class of cellular objects in SH will satisfy many very important properties,
for example, given cellular objects X and Y in SH, a map f : X → Y will be an isomorphism
if and only if it induces an isomorphism on stable homotopy groups π∗(f) : π∗(X) → π∗(Y ).
Many of the important theorems and propositions presented in this paper will require some sort
of cellularity condition.

In Section 4, we will discuss the theory of monoid objects in SH, which correspond to ring
spectra in stable homotopy theory. We will show that given a monoid object E in SH, its stable
homotopy groups π∗(E) naturally form an A-graded ring, and furthermore, E-homology E∗(−)
will yield a functor from SH to the category of A-graded left modules over π∗(E). Here a great
deal of effort will be put into formulating the exact sense in which the rings π∗(E) are A-graded
anticommutative when E is a commutative monoid object in SH. In particular, here we will
develop the notion of A-graded anticommutative rings, and we will show that π∗(E) is an A-
graded anticommutative algebra over the A-graded anticommutative stable homotopy ring π∗(S)
(where S is the monoidal unit in SH), in a suitable sense. We will also briefly discuss some of the
consequences of these results in the classical, motivic, and equivariant stable homotopy categories.

In Section 5, we will prove analogues of important theorems for homology in SH. First of
all, we will prove that for E a commutative monoid object and objects X and Y in SH, under
suitable conditions we have a Künneth isomorphism

Z∗(E)⊗π∗(E) E∗(W ) → π∗(Z ⊗ E ⊗W )

relating the Z-homology of E and the E-homology of W to the stable homotopy groups of
Z ⊗ E ⊗ W . We will then take a bit to develop the theory of module objects over monoid
objects in SH, with which we will prove a generalization of the universal coefficient theorem,
which will tell us that under suitable conditions, for a monoid object E in SH and an object X,
the cohomology E∗(X) of X is the dual of the homology E∗(X) as a π∗(E)-module. These two
theorems will be very important for our later work.
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In Section 6, we will show that for nice enough commutative monoid objects E in SH, that
the E-self homology E∗(E), along with the ring π∗(E), forms an A-graded anticommutative Hopf

algebroid, which we define to be a co-groupoid object in the category π∗(S)-GCAA of A-graded
anticommutative π∗(S)-algebras. This pair (E∗(E), π∗(E)) with its additional structure as a Hopf
algebroid is called the dual E-Steenrod algebra, over which the A-graded E-homology group E∗(X)
of X is canonically an A-graded left comodule for each X in SH. This will be the culmination of
our efforts to place additional structure on the E-homology groups E∗(X), and we will finish the
section by constructing an isomorphism

[X,E ⊗ Y ]∗
∼= Hom∗

E∗(E)(E∗(X), E∗(E ⊗ Y ))

for a suitable commutative monoid object E and objects X and Y in SH.
In Section 7, we will finally construct the Z × A-graded spectral sequence (Es,ar (X,Y ), dr)

called the E-Adams spectral sequence for the computation of X and Y , and we will show that
under suitable conditions, its E2 page may be characterized in terms of a graded isomorphism

E∗,∗
2 (X,Y ) ∼= Ext∗,∗E∗(E)(E∗(X), E∗(Y )).

Furthermore, we will briefly discuss that the natural target group of this spectral sequence is the
object [X,Y ∧

E ]∗, where Y
∧
E is the “E-nilpotent completion” of Y . Furthermore, we will briefly

discuss some conditions under which the spectral sequence strongly converges to this target group.
We can summarize all of the results in the following theorem:

Theorem 1.1. Let (E,µ, e) be a commutative monoid object in SH, and let X and Y be objects.
Further suppose that:

• E is cellular and flat,
• X is cellular and E∗(X) is a graded projective left π∗(E)-module, and
• Y is cellular.

Then there exists an object Y ∧
E in SH called the E-nilpotent completion of Y and a Z × A-

graded spectral sequence called the E-Adams spectral sequence for the computation of [X,Y ]∗
with signature

Es,a2 (X,Y ) = Exts,a+s
E∗(E)(E∗(X), E∗(Y )) =⇒ [X,Y ∧

E ]∗.

Furthermore, if the derived E∞ term RE∞ of the sequence vanishes, then this spectral sequence
converges strongly to the indicated target group.

We will give all of the relevant definitions along the way.
Finally, in Section 8, we will suggest some further directions in which one can develop the

theory we have set up.
We also include five appendices on the theory of (tensor) triangulated categories, A-graded

abelian groups, rings, and modules, monoid objects in symmetric monoidal categories, homological
(co)algebra and derived functors, and Hopf algebroids.

1.2. Acknowledgements. I am grateful to Peter May and Noah Wisdom for mentoring me
during this project. I also would like to thank Peter May for hosting the UChicago REU — the
experience was truly invaluable. Finally, I am indebted to my peers for the continual support and
encouragement they have provided during the program and the months following.

2. Preliminaries

2.1. Background. To start, we give a brief review of the assumed background. The most im-
portant tool we require of the reader is a familiarity with category theory, and in particular
additive, abelian, and (symmetric, closed) monoidal categories. We do not recall any definitions
here (mostly so as not to make an already lengthy document any longer), for that we refer the
reader to any standard treatment of category theory, for example, Emily Riehl’s book [27], or
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Mac Lane’s book [15]. In particular, see chapters 7 and 9 of the latter book for a reference on
(symmetric closed) monoidal categories.

When working in monoidal categories, we will nearly always be implicitly using Mac Lane’s
coherence theorem for monoidal categories, which was originally proven in Mac Lane’s paper [16],
along with a stronger version of the theorem for symmetric monoidal categories. These theorems
are tedious to rigorously state, and we do not do so here (for that we refer the reader to [7,
§2]), but their consequences are intuitive. Roughly, they say that there is a strong monoidal
equivalence from any monoidal category to a strict monoidal category, where tensoring with the
unit, the associators, and the unitors are all the identity. In the symmetric case, the theorem says
in addition that in a symmetric monoidal category, any morphisms between two objects given
by “formal composites” of products of unitors, associators, symmetries, and their inverses are
equal if the domain and codomain of the composites have the same underlying permutation (after
removing units). In practice, the most immediate consequence of these theorems is that when
constructing maps and showing diagrams commute, we will nearly always suppress associators
and unitors from the notation, instead taking them to be equalities. Similarly, we will assume
that tensoring with the unit is the identity. This style of reasoning is essential to understanding
nearly anything written here, and as such we will usually not point out when we are applying the
coherence theorems. An example of where we use coherence is in the very first proof we give, in
Proposition 2.7 below.

We also assume the reader is familiar with the theory of modules and bimodules over (non-
commutative) rings, along with products, direct sums, and tensor products of them. In Appen-
dix B, assuming this knowledge, we will develop the theory of A-graded versions of these notions,
as well as some of their properties. These notions should be very familiar to any reader familiar
with the standard notion of Z or N-graded rings and modules. This appendix can — and perhaps
should — be skipped by anyone knowledgeable in these matters.

Finally, ideally the reader should be familiar with triangulated categories, monoid objects in
monoidal categories and their modules, and derived functors, although each of these topics are
developed or at least reviewed in the main body of the paper or its appendices. With all of that
out of the way, we may finally get to our the key definition which underlies our work.

2.2. Triangulated categories with sub-Picard grading. Our goal is now to construct a list
of conditions which axiomatize “a stable homotopy category of spaces”. To do so, we will build
up the necessary definitions one-by-one. Along the way, we will discuss some of the ramifications
of our definitions and how they relate to each other. Once we have defined everything needed,
we will establish the axiomatization in Convention 2.6. The first definition we will need is that
of a triangulated category.

Definition 2.1. A triangulated category (C,Σ,D) is the data of:

(1) An additive category C.
(2) An additive auto-equivalence Σ : C → C called the shift functor.
(3) A collection D of distinguished triangles in C, where a triangle is a sequence of arrows of

the form

X → Y → Z → ΣX.

Distinguished triangles are also sometimes called cofiber sequences or fiber sequences.

These data must satisfy the following axioms:

TR0 Given a commutative diagram

X Y Z ΣX

X ′ Y ′ Z ′ ΣX ′

∼= ∼= ∼= ∼=
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where the vertical arrows are isomorphisms, if the top row is distinguished then so is the
bottom.

TR1 For any object X in C, the diagram

X
idX−−→ X → 0 → ΣX

is a distinguished triangle.
TR2 For all f : X → Y there exists an object Cf (also sometimes denoted Y/X) called the

cofiber of f and a distinguished triangle

X
f−→ Y → Cf → ΣX.

TR3 Given a solid diagram

X Y Z ΣX

X ′ Y ′ Z ′ ΣX ′

f Σf

such that the leftmost square commmutes and both rows are distinguished, there exists
a dashed arrow Z → Z ′ which makes the remaining two squares commute.

TR4 A triangle

X
f−→ Y

g−→ Z
h−→ ΣX

is distinguished if and only if

Y
g−→ Z

h−→ ΣX
−Σf−−−→ ΣY

is distinguished.
TR5 (Octahedral axiom) Given three distinguished triangles

X
f−→ Y

h−→ Y/X → ΣX

Y
g−→ Z

k−→ Z/Y → ΣY

X
g◦f−−→ Z

l−→ Z/X → ΣX

there exists a distinguished triangle

Y/X
u−→ Z/X

v−→ Z/Y
w−→ Σ(Y/X)

such that the following diagram commutes

X Z Z/Y Σ(Y/X)

Y Z/X ΣY

Y/X ΣX

g◦f k w

f

h Σf

Σhl v

u

g

It turns out that the above definition is actually redundant; TR3 and TR4 follow from the
remaining axioms (see Lemmas 2.2 and 2.4 in [18]). In Appendix A, we develop some of the
theory of triangulated categories. For those familiar with the theory of model categories, the
homotopy category of any stable model category is canonically triangulated (see [12, Chapter
7]). The most commonly considered example of a triangulated category is the derived category
D(A) of an abelian group A, obtained by localizing the category of chain complexes in A at the
quasi-isomorphisms.
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In nature, one will often encounter categories which are both triangulated and symmetric
monoidal. It is natural to ask that the two structures are compatible in some sense. Such
categories are called tensor triangulated categories, and there are multiple proposed definitions
given in the literature for what these categories look like. For our purposes, we will use Definition
2.1 from Balmer’s paper [3], which defines a tensor triangulated category to be a triangulated
symmetric monoidal category for which the functor − ⊗ − is triangulated in each argument.
Unravelling definitions, we may give the following more explicit definition:

Definition 2.2. A tensor triangulated category is a triangulated symmetric monoidal category
(C,⊗, S,Σ,D) such that:

TT1 For all objects X and Y in C, there are natural isomorphisms

eX,Y : ΣX ⊗ Y
∼=−→ Σ(X ⊗ Y ).

TT2 For each object X in C, the functor X ⊗ (−) ∼= (−)⊗X is an additive functor.
TT3 For each object X in C, the functor X ⊗ (−) ∼= (−)⊗X preserves distinguished triangles,

in that given a distinguished triangle/(co)fiber sequence

A
f−→ B

g−→ C
h−→ ΣA,

then also

X ⊗A
X⊗f−−−→ X ⊗B

X⊗g−−−→ X ⊗ C
X⊗′h−−−−→ Σ(X ⊗A)

and

A⊗X
f⊗X−−−→ B ⊗X

g⊗X−−−→ C ⊗X
h⊗′X−−−−→ Σ(A⊗X)

are distinguished triangles, where here we writing X ⊗′ h and h ⊗′ X to denote the
compositions

X ⊗ C
X⊗h−−−→ X ⊗ ΣA

τ−→ ΣA⊗X
eA,X−−−→ Σ(A⊗X)

Στ−−→ Σ(X ⊗A)

and

C ⊗X
h⊗X−−−→ ΣA⊗X

eA,X−−−→ Σ(A⊗X),

respectively.

This definition will suffice for our purposes, but we warn the reader that it is the weakest
found in the literature. Often additional coherence axioms are imposed, for example, one may
require that the eX,Y ’s to be compatible with the associators and to satisfy a sort of “graded
commutativity condition”. For an in-depth discussion of such extra conditions, we refer the
reader to the treatment given by May in [18]. For examples of tensor triangulated categories, we
refer the reader to Section 1 of Balmer’s paper [4].

Definition 2.3. Given a tensor triangulated category (C,⊗, S,Σ, e,D), a sub-Picard grading on
C is the following data:

• A pointed abelian group (A,1) along with a homomorphism of pointed groups h : (A,1) →
(PicC,ΣS), where PicC is the Picard group of isomorphism classes of invertible objects
in C.2

• For each a ∈ A, a chosen representative Sa called the a-sphere in the isomorphism class
h(a). We additionally require S0 = S.

• For each a, b ∈ A, an isomorphism ϕa,b : S
a+b

∼=−→ Sa ⊗ Sb. This family of isomorphisms
is required to be coherent, in the following sense:

– For all a ∈ A, we must have that ϕa,0 coincides with the right unitor ρ−1
Sa : Sa

∼=−→
Sa ⊗ S and ϕ0,a coincides the left unitor λ−1

Sa : Sa
∼=−→ S ⊗ Sa.

2Recall an object X is a symmetric monoidal category is invertible if there exists some object Y and an
isomorphism S ∼= X ⊗ Y .
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– For all a, b, c ∈ A, the following “associativity diagram” must commute:

Sa+b ⊗ Sc Sa+b+c Sa ⊗ Sb+c

(Sa ⊗ Sb)⊗ Sc Sa ⊗ (Sb ⊗ Sc)

ϕa+b,c ϕa,b+c

Sa⊗ϕb,cϕa,b⊗Sc

∼=

Arguably the most interesting part of the above definition is the family of isomorphisms ϕa,b :

Sa+b
∼=−→ Sa ⊗ Sb. First of all, note that the two conditions we have given above imply a rather

strong notion of coherence for these isomorphisms:

Remark 2.4. By induction, the coherence conditions for the ϕa,b’s in the above definition say
that given any a1, . . . , an ∈ A and b1, . . . , bm ∈ A such that a1 + · · · + an = b1 + · · · + bm and
any fixed parenthesizations of X = Sa1 ⊗ · · · ⊗ Sab and Y = Sb1 ⊗ · · · ⊗ Sbm , there is a unique
isomorphism X → Y that can be obtained by forming formal compositions of products of ϕa,b,
identities, associators, unitors, and their inverses (but not symmetries).

In light of this remark, when working in a triangulated category with sub-Picard grading, we
will usually simply write ϕ or even just ∼= for any isomorphism that is built by taking compositions
of products of ϕa,b’s, unitors, associators, identities, and their inverses.

In [7], Dugger studied the more general notion of an additive symmetric monoidal category
(C,⊗, S) equipped with an abelian group A and a group homomorphism h : A → Pic(C). In
particular, there the following question was explored: Given a chosen representative Sa in each
isomorphism class h(a) with S0 = S, can one find such a coherent family of isomorphisms ϕa,b :

Sa+b
∼=−→ Sa ⊗ Sb? (Dugger calls these families “A-trivializations of C”). The answer, given in

Proposition 7.1 in Dugger’s paper, is that we can always find such a coherent family, although
it is certainly not unique, nor is there a canonical choice for such a family. Furthermore, given
such a coherent family of isomorphisms, if we define π∗(S) to be the A-graded abelian group
π∗(S) :=

⊕
a∈A[S

a, S], we may endow it with an associative and unital graded product sending

x : Sa → S and y : Sb → S to the composition

Sa+b
ϕa,b−−→ Sa ⊗ Sb

x⊗y−−−→ S ⊗ S
∼=−→ S.

The bad news is that this product is very much dependent on which choice of coherent family
odf isomorphism we chose, and in fact, different coherent families may give rise to strictly non-
isomorphic ring structures on π∗(S).

The upshot of this discussion is the following: given a tensor triangulated category, in order
to give it a sub-Picard grading, all one needs to do is give the information specified in the first
two bullet points in Definition 2.3, and then one gets a coherent family of isomorphisms for free,
although they must make a choice between several different and non-canonical choices of such
families. As we will see in Section 4, this ring structure on π∗(S) directly controls a large amount
of the additional algebraic structure we can place on hom-groups of objects in SH, so one must
be very careful to choose the “correct” family.

2.3. The category SH and its conventions. Now, we may finally fix the category SH in which
we will work for the remainder of this document. Before we can do so, we need one last technical
definition.

Definition 2.5. Let C be an additive category with arbitrary (set-indexed) coproducts. Then
an object X in C is compact if, for any collection of objects Yi in C indexed by some set I, the
canonical map ⊕

i

C(X,Yi) → C(X,
⊕
i

Yi)
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is an isomorphism of abelian groups. (Explicitly, the above map takes a generator x ∈ C(X,Yi)

to the composition X
x−→ Yi ↪→

⊕
i Yi.)

Now we may define the category.

Convention 2.6. Let (SH,⊗, S,Σ, e,D) be a tensor triangulated category with sub-Picard grad-
ing (A,1, h, {Sa}, {ϕa,b}). We require in addition that:

• SH is monoidal closed,
• SH has arbitrary products and coproducts, and
• for each a ∈ A, Sa is a compact object.

The motivating examples of such a category are the following:

• The classical stable homotopy category hoSp, which is equipped with an isomorphism

h : Z
∼=−→ Pic(hoSp)

sending n ∈ Z to the n-sphere spectrum Sn.
• The motivic stable homotopy category SHS over a base scheme S , which is equipped
with a homomorphism

h : Z2 → Pic(SHS )

sending a pair (p, q) to the motivic (p, q)-sphere spectrum Sp,q.
• The equivariant stable homotopy category hoGSp associated to a group G, which is

equipped with a homomorphism

h : RO(G) → Pic(hoG-Sp)

taking a representation V to the representation sphere SV .

Each of these categories may be realized as the homotopy category of some monoidal stable
model category. For a discussion of the classical stable homotopy category and its properties, we
refer the reader to the nLab page [22], which gives the construction in explicit detail and proves
all the required properties. In particular, we point out the . For the motivic stable homotopy
category, we refer the reader to the wonderful treatment given in Section 2 of the paper [30] by
Wilson and Østvær. There the construction and properties are only reviewed, and no proofs are
given, but at the beginning of the section the authors include a comprehensive list of resources
which contain full proofs of all the relevant details. For the equivariant stable homotopy category,
we refer the reader to the the book [17] of Mandell and May. We will discuss how exactly the
family of ϕa,b’s are chosen in these three examples in section 4.

For our purposes, we will not actually need the full power of a closed monoidal structure on
SH — all we will need is that the monoidal product −⊗− preserves arbitrary (co)limits in each
argument. In practice though, and for all the examples we will discuss here, any such category
will usually be monoidal closed, so we keep this assumption. In order to reinforce our idea of SH
as “a stable homotopy category”, we will establish some relevant notational conventions in SH.
Given an object X and a natural number n > 0, we write

Xn :=

n times︷ ︸︸ ︷
X ⊗ · · · ⊗X and X0 := S.

When we want to be explicit about them, we will denote the associator, symmetry, left unitor,
and right unitor isomorphisms in SH by

αX,Y,Z : (X ⊗ Y )⊗ Z
∼=−→ X ⊗ (Y ⊗ Z)

λX : S ⊗X
∼=−→ X

τX,Y : X ⊗ Y
∼=−→ Y ⊗X

ρX : X ⊗ S
∼=−→ X.
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Often we will drop the subscripts. As we discussed above, by the coherence theorem for symmetric
monoidal categories, we will nearly always assume α, ρ, and λ are actual equalities, and will
suppress them from the notation entirely.

Given some integer n ∈ Z, we will write a bold n to denote the element n · 1 in A. Note

that given some fixed choice of isomorphism γ : ΣS
∼=−→ S1, we may use it to construct a natural

isomorphism Σ ∼= S1 ⊗−:

ΣX
Σλ−1

X−−−→ Σ(S ⊗X)
e−1
S,X−−−→ ΣS ⊗X

γ⊗X−−−→ S1 ⊗X,

where eX,Y : ΣX ⊗ Y → Σ(X ⊗ Y ) is the isomorphism specified by the fact that SH is tensor-
triangulated. The first two arrows are natural in X by definition. The last arrow is natural in X

by functoriality of −⊗−. Henceforth, we will assume some γ : ΣS
∼=−→ S1 has been fixed, and we

always use ν to denote the induced natural isomorphism.
Given some a ∈ A, we define functors Σa := Sa⊗− and Ωa := Σ−a = S−a⊗−. We specifically

define Ω := Ω1. We say “the ath suspension of X” to denote ΣaX. It turns out that Σa is an
autoequivalence of SH for each a ∈ A, and furthermore, Ωa and Σa form an adjoint equivalence
of SH for all a in A:

Proposition 2.7. For each a ∈ A, the isomorphisms

ηaX : X
ϕa,−a⊗X−−−−−−→ Sa ⊗ S−a ⊗X = ΣaΩaX

and

εaX : ΩaΣaX = S−a ⊗ Sa ⊗X
ϕ−1
−a,a⊗X−−−−−−→ X

are natural in X, and furthermore, they are the unit and counit respectively of the adjoint autoe-
quivalence (Ωa,Σa, ηa, εa) of SH.

Proof. That ηa and εa are natural in X follows by functoriality of − ⊗ −. Now, recall that in
order to show that these natural isomorphisms form an adjoint equivalence, it suffices to show
that the natural isomorphisms ηa : IdSH ⇒ ΩaΣa and εa : ΣaΩa ⇒ IdSH satisfy one of the two
zig-zag identities:

Ωa ΩaΣaΩa ΣaΩaΣa Σa

Ωa Σa

Ωaηa

εaΩa Σaεa

ηaΣa

(that it suffices to show only one is [20, Lemma 3.2]). We will show that the left is satisfied.
Unravelling definitions, we simply wish to show that the following diagram commutes for all X
in SH:

S−a ⊗X S−a ⊗ Sa ⊗ S−a ⊗X

S−a ⊗X

S−a⊗ϕa,−a⊗X

ϕ−1
−a,a⊗S

−a⊗X

Yet this is simply the diagram obtained by applying −⊗X to the associativity coherence diagram
for the ϕa,b’s (since ϕa,0 and ϕ0,a coincide with the unitors, and by coherence we are taking the
unitors and associators to be equalities), so it does commute, as desired. □

In particular, since the functor Σ is naturally isomorphic to Σ1, and Ω = Ω1 is a left adjoint
for Σ, we have that Σ is apart of an adjoint autoequivalence (Ω,Σ, η, ε) of SH, where η and ε are
the compositions

η : IdSH
η1

=⇒ Σ1Ω
ν−1Ω
===⇒ ΣΩ and ε : ΩΣ

Ων
==⇒ ΩΣ1 ε1

=⇒ IdSH.
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In other words, we have shown that the category SH is adjointly triangulated, in the following
sense:

Definition 2.8. An adjointly triangulated category (C,Ω,Σ, η, ε,D) is the data of a triangulated
category (C,Σ,D) along with an inverse shift functor Ω : C → C and natural isomorphisms
η : IdC ⇒ ΣΩ and ε : ΩΣ ⇒ IdC such that (Ω,Σ, η, ε) forms an adjoint equivalence of C. In other
words, η and ε are natural isomorphisms which also are the unit and counit of an adjunction
Ω ⊣ Σ, so they satisfy either of the following “zig-zag identities”:

Ω ΩΣΩ ΣΩΣ Σ

Ω Σ

Ωη

εΩ

ηΣ

Σε

(Satisfying one implies the other is automatically satisfied, see [20, Lemma 3.2]).

We warn the reader that the above terminology is nonstandard. We prove some results about
adjointly triangulated categories in Appendix A.3. Now given two objects X and Y in SH, we
will write [X,Y ] with brackets to denote the hom-abelian group of morphisms from X to Y , and
we will denote the internal hom object by F (X,Y ). Keeping with our intuition that SH is a
“homotopy category”, we will often refer to elements of [X,Y ] as “classes”. We may extend the
abelian group [X,Y ] to an A-graded abelian group [X,Y ]∗ by defining [X,Y ]a := [ΣaX,Y ]. It is
further possible to extend composition in SH to an A-graded map

[Y,Z]∗ ⊗Z [X,Y ]∗ → [X,Z]∗,

but we do not explore this here. Given an object X in SH and some a ∈ A, we can define the
abelian group

πa(X) := [Sa, X],

which we call the ath (stable) homotopy group of X. We write π∗(X) for the A-graded abelian
group

⊕
a∈A πa(X), so that in particular we have a canonical isomorphism

π∗(X) = [S∗, X] ∼= [S,X]∗.

Given some other object E, we can define the A-graded abelian groups E∗(X) and E∗(X) by the
formulas

Ea(X) := πa(E ⊗X) = [Sa, E ⊗X] and Ea(X) := [X,Sa ⊗ E].

We refer to the functor E∗(−) as the homology theory represented by E, or just E-homology, and
we refer to E∗(−) as the cohomology theory represented by E, or just E-cohomology.

A nice result is that in SH, (co)fiber sequences (distinguished triangles) give rise to homotopy
long exact sequences. Of key importance for this exact sequence (any many applications beyond),

will be some fixed family of isomorphisms saX,Y : [X,ΣaY ]∗
∼=−→ [X,Y ]∗−a. We fix these now, once

and for all:

Definition 2.9. For all X,Y in SH and a ∈ A, there are A-graded isomorphisms

saX,Y : [X,ΣaY ]∗ → [X,Y ]∗−a

sending x : Sb ⊗X → Sa ⊗ Y in [X,ΣaY ]∗ to the composition

Sb−a ⊗X
ϕ−a,b⊗X−−−−−−→ S−a ⊗ Sb ⊗X

S−a⊗x−−−−−→ S−a ⊗ Sa ⊗ Y
ϕ−1
−a,a⊗Y−−−−−−→ Y.

Furthermore, these isomorphisms are natural in both X and Y .
In particular, for each a ∈ A and object X in SH, we have natural isomorphisms

saX : π∗(Σ
aX) = [S∗,ΣaX]

∼=−→ [S,ΣaX]∗
saS,X−−−→ [S,X]∗−a

∼=−→ π∗−a(X)



TENSOR TRIANGULATED CATEGORIES WITH SUB-PICARD GRADING 13

sending x : Sb → Sa ⊗X in π∗(Σ
aX) to the composition

Sb−a
ϕ−a,b−−−→ S−a ⊗ Sb

S−a⊗x−−−−−→ S−a ⊗ Sa ⊗X
ϕ−1
−a,a⊗X−−−−−−→ X.

Proof. First, by unravelling definitions, note that saX,Y is precisely the composition

[X,ΣaY ]∗ = [S∗ ⊗X,Sa ⊗ Y ]
adj−−→ [S−a ⊗ S∗ ⊗X,Y ]

(ϕ−a,∗⊗X)∗−−−−−−−−→ [S∗−a ⊗X,Y ] = [X,Y ]∗−a,

where the adjunction is that from Proposition 2.7. The adjunction is natural in S∗ ⊗X and Y
by definition, so that in particular it is natural in X and Y . It is furthermore straightforward to
see by functoriality of − ⊗ − that the second arrow is natural in both X and Y . Thus saX,Y is
natural in X and Y , as desired. □

Now we may construct the long exact sequence:

Proposition 2.10. Suppose we are given a distinguished triangle

X
f−→ Y

g−→ Z
h−→ ΣX

and an object W in SH. Then there exists a “connecting homomorphism” of degree −1

∂ : [W,Z]∗ → [W,X]∗−1

such that the following triangle is exact at each vertex:

[W,X]∗ [W,Y ]∗

[W,Z]∗

f∗

g∗
∂

Proof. By axiom TR4 for a triangulated category and the fact that distinguished triangles are
exact (Proposition A.2), we have the following exact sequence in SH

X
f−→ Y

g−→ Z
h−→ ΣX

Σf−−→ ΣY.

Thus, we may apply [W,−]∗ to get an exact sequence of A-graded abelian groups which fits into
the top row in the following diagram:

[W,X]∗ [W,Y ]∗ [W,Z]∗ [W,ΣX]∗ [W,ΣY ]∗

[W,Σ1X]∗ [W,Σ1Y ]∗

[W,X]∗ [W,Y ]∗ [W,Z]∗ [W,X]∗−1 [W,Y ]∗−1

f∗ g∗ h∗ Σf∗

f∗ g∗ ∂ f∗

(νX)∗

s1W,X

Σ1f∗

s1W,Y

(νY )∗

where here we define ∂ : [W,Z]∗ → [W,X]∗−1 to be the composition which makes the third square

commute. The diagram commutes by naturality of ν and s1, so that the bottom row is exact
since the top row is exact and the vertical arrows are isomorphisms. Thus the bottom row is the
long exact sequence, and we may roll it up to get the desired exact triangle:

[W,X]∗ [W,Y ]∗

[W,Z]∗

f∗

g∗
∂

□
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3. Cellular objects in SH

One very important class of objects in SH are the cellular objects. Intuitively, these are the
objects that can be built out of spheres via taking coproducts and (co)fibers.

Definition 3.1. Define the class of cellular objects in SH to be the smallest class of objects such
that:

(1) For all a ∈ A, the a-sphere Sa is cellular.
(2) If we have a distinguished triangle

X → Y → Z → ΣX

such that two of the three objects X, Y , and Z are cellular, than the third object is also
cellular.

(3) Given a collection of cellular objects Xi indexed by some (small) set I, the object
⊕

i∈I Xi

is cellular (recall we have chosen SH to have arbitrary coproducts).

We write SH-Cell to denote the full subcategory of SH on the cellular objects.

This definition is adapted from that given on pg. 21 in the paper [9] by Dugger and Isaksen.
By the same reasoning given therewithin, in the motivic stable homotopy category, our definition
is equivalent to the original definition of cellularity given in [8]. More generally, given an object
E in SH, Dugger and Isaksen consider the class of E-cellular objects in SH. This is defined to
be the smallest class of objects in SH satisfying the above three conditions, and in addition the
requirement that if X is E-cellular then so is E ⊗ X. Note that by Lemma 3.4, the class of
cellular objects in SH is equivalently the class of S-cellular objects in SH. For our purposes, we
will only be concerned with standard cellular objects, so we will not pursue any of the theory of
E-cellular objects in SH for a general E. For an extensive review of cellularity in the motivic
stable homotopy category, as well as a treatment of its construction, we refer the reader to the
delightful paper [11] written by Joseph Hlavinka for the 2021 UChicago mathematics REU.

We devote the rest of the section to proving some important facts about cellular objects. These
should be familiar to anyone acquainted with the usual notion of cellular spaces (CW complexes).

Lemma 3.2. Let X and Y be two isomorphic objects in SH. Then X is cellular iff Y is cellular.

Proof. Assume we have an isomorphism f : X
∼=−→ Y and that X is cellular. Then consider the

following commutative diagram

X Y 0 ΣX

X X 0 ΣX

f

f−1

The bottom row is distinguished by axiom TR1 for a triangulated category. Hence since X is
cellular, 0 is also cellular, since the class of cellular objects satisfies two-of-three for distinguished
triangles. Furthermore, since the vertical arrows are all isomorphisms, the top row is distinguished
as well, by axiom TR0. Thus again by two-of-three, since X and 0 are cellular, so is Y , as
desired. □

Example 3.3. Every object in the classical stable homotopy category is cellular.

Proof. By [23, Proposition 2.16], every object in hoSp is isomorphic to a CW spectrum, which
are spectra that can be constructed by gluing copies of spheres together, and are thus clearly
cellular (since the cofiber of f : X → Y in hoSp is precisely the spectrum obtained by “gluing”
a disk to Y along f(X)). □

Lemma 3.4. Let X and Y be cellular objects in SH. Then X ⊗ Y is cellular.
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Proof. Let E be a cellular object in SH, and let E be the collection of objects X in SH such that
E ⊗X is cellular. First of all, suppose we have a distinguished triangle

X → Y → Z → ΣX

such that two of three of X, Y , and Z belong to E. Then since SH is tensor triangulated, we
have a distinguished triangle

E ⊗X → E ⊗ Y → E ⊗ Z → Σ(E ⊗X).

Per our assumptions, two of three of E ⊗X, E ⊗ Y , and E ⊗ Z are cellular, so that the third is
by definition. Thus, all three of X, Y , and Z belong to E if two of them do.

Second of all, suppose we have a family Xi of objects in E indexed by some (small) set I, and
set X :=

⊕
iXi. Then we’d like to show X belongs to E, i.e., that E ⊗X is cellular. Indeed,

E ⊗X = E ⊗

(⊕
i

Xi

)
∼=
⊕
i

(E ⊗Xi),

where the isomorphism is given by the fact that SH is monoidal closed, so E ⊗ − preserves
arbitrary colimits as it is a left adjoint. Per our assumption, since each E ⊗ Xi is cellular, the
rightmost object is cellular, since the class of cellular objects is closed under taking arbitrary
coproducts, by definition. Hence E ⊗X is cellular by Lemma 3.2.

Finally, we would like to show that each Sa belongs to E, i.e., that Sa ⊗ E is cellular for all
a ∈ A. When E = Sb for some b ∈ A, this is clearly true, since Sb ⊗ Sa ∼= Sa+b, which is cellular
by definition, so that Sb ⊗ Sa is cellular by Lemma 3.2. Thus by what we have shown, the class
of objects X for which Sa ⊗ X is cellular contains every cellular object. Hence in particular
E ⊗ Sa ∼= Sa ⊗ E is cellular for all a ∈ A, as desired. □

Lemma 3.5. Let W be a cellular object in SH such that π∗(W ) = 0. Then W ∼= 0.

Proof. Let E be the collection of all X in SH such that and [ΣnX,W ] = 0 for all n ∈ Z (where
for n > 0 we define Σ−n := Ωn = (S−1 ⊗−)n). We claim E contains every cellular object in SH.
First of all, each Sa belongs to E, as

[ΣnSa,W ] ∼= [Sn ⊗ Sa,W ] ∼= [Sa+n,W ] ≤ π∗(W ) = 0.

Furthermore, suppose we are given a distinguished triangle

X → Y → Z → ΣX

such that two of three of X, Y , and Z belong to E. By Proposition A.9, for all n ∈ Z we get an
exact sequence of abelian groups

[Σn+1X,W ] → [ΣnZ,W ] → [ΣnY,W ] → [ΣnX,W ] → [Σn−1Z,W ].

Clearly if any two of three of X, Y , and Z belong to E, then by exactness of the above sequence
all three of the middle terms will be zero, so that the third object will belong to E as well. Finally,
suppose we have a collection of objects Xi in E indexed by some small set I. Then[

Σn
⊕
i

Xi,W

]
∼=

[⊕
i

ΣnXi,W

]
∼=
∏
i

[ΣnXi,W ] =
∏
i

0 = 0,

where the first isomorphism follows by the fact that Σn is apart of an adjoint equivalence (Propo-
sition 2.7), so it preserves arbitrary colimits.
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Thus, by definition of cellularity, E contains every cellular object. In particular, E contains W ,
so that [W,W ] = 0, meaning idW = 0, so we have a commutative diagram

0 0

W W

Hence the diagonals exhibit isomorphisms between 0 and W , as desired. □

Theorem 3.6. Let X and Y be cellular objects in SH, and suppose f : X → Y is a morphism
such that f∗ : π∗(X) → π∗(Y ) is an isomorphism. Then f is an isomorphism.

Proof. By axiom TR2 for a triangulated category, we have a distinguished triangle

X
f−→ Y

g−→ Cf
h−→ ΣX.

First of all, note that by definition since X and Y are cellular, so is Cf . We claim π∗(Cf ) = 0.
Indeed, given a ∈ A, by axiom TR4 for a triangulated category and the fact that distinguished
triangles are exact, the following sequence of abelian groups is exact:

[Sa, X]
f∗−→ [Sa, Y ]

g∗−→ [Sa, Cf ]
h∗−→ [Sa,ΣX]

Σf∗−−→ [Sa,ΣY ].

where the first arrow is and last arrows are isomorphisms, per our assumption that f is an
isomorphism. Then by exactness we have imh∗ = ker(Σf∗) = 0. Yet we also have ker g∗ =
im f∗ = [Sa, Y ], so that kerh∗ = im g∗ = 0. It is only possible that kerh∗ = imh∗ = 0 if
[Sa, Cf ] = 0. Thus, we have shown π∗(Cf ) = 0, and Cf is cellular, so by Lemma 3.5 there is an
isomorphism Cf ∼= 0. Now consider the following diagram:

X Y Cf ΣX

Y Y 0 ΣY

f

f

Σf∼=

The middle square commutes since 0 is terminal, while the right square commutes since Cf ∼= 0
is initial. The top row is distinguished by assumption. The bottom row is distinguished by
axiom TR2. Then since the middle two vertical arrows are isomorphisms, by Lemma A.3, f is an
isomorphism as well, as desired. □

Lemma 3.7. Let e : X → X be an idempotent morphism in SH, i.e., e ◦ e = e. Then this
idempotent splits, meaning e factors as

X
r−→ Y

ι−→ X

for some object Y and morphisms r and ι with r ◦ ι = idY . Furthermore, if X is cellular than so
is Y .

Proof. In [19, Proposition 1.6.8], it is shown that idempotents split in triangulated categories
with countable coproducts, and in particular, the object Y through which the splitting factors
may be taken as the homotopy colimit of the sequence

X
e−→ X

e−→ X
e−→ X

e−→ X → · · · .
Thus since SH is triangulated and has arbitrary coproducts, given an idempotent e : X → X in
SH, e splits as desired. Furthermore, the splitting factors through the homotopy limit Y of the
above sequence, so we have a distinguished triangle in SH

∞⊕
i=0

X →
∞⊕
i=0

X → Y → Σ(

∞⊕
i=0

X).
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Then if X is cellular, by definition
⊕∞

i=0X is as well. Thus by 2-of-3 for distinguished triangles
for cellular objects, we would have that Y is cellular as desired. □

4. Monoid objects in SH

So far, we have shown that each object E in SH yields an E-homology functor E∗ from SH to
the category AbA of A-graded abelian groups. In this section, we will examine some conditions
on E under which we may refine this functor by identifying more structure on its image. The key
assumption will be that E is a monoid object in SH, i.e., that there is an associative and unital
multiplication µ : E⊗E → E. For a review of monoid objects in a symmetric monoidal category,
see Appendix C. The most important example of a monoid object in SH is the unit S, which has
multiplication map ϕ−1

0,0 = λS = ρS : S ⊗ S → S and unit map idS : S → S.

4.1. Monoid objects in SH and their associated rings. To start, we will show that if E is
a monoid object in SH, then π∗(E) is canonically a ring.

Proposition 4.1. The assignment (E,µ, e) 7→ π∗(E) is a functor π∗ from the category MonSH

of monoid objects in SH (Definition C.3) to the category of A-graded rings. In particular, given a
monoid object (E,µ, e) in SH, π∗(E) is canonically a ring with unit e ∈ π0(e) = [S,E] and product
π∗(E)× π∗(E) → π∗(E) which sends classes x : Sa → E and y : Sb → E to the composition

xy : Sa+b
ϕa,b−−→ Sa ⊗ Sb

x⊗y−−−→ E ⊗ E
µ−→ E.

Proof. First, we show that π∗(E) is actually a ring as indicated. By Lemma B.8, in order to make
the A-graded abelian group π∗(E) into an A-graded ring, it suffices to construct an associative,
unital, and bilinear (distributive) product only with respect to homogeneous elements. Suppose
we have classes x, y, and z in πa(E), πb(E), and πc(E), respectively. To see associativity, consider
the following diagram:

E ⊗ E

Sa+b+c Sa ⊗ Sb ⊗ Sc E ⊗ E ⊗ E E

E ⊗ E

∼= x⊗y⊗z

µ⊗E
µ

E⊗µ
µ

(here the first arrow is the unique isomorphism obtained by composing products of ϕa,b’s, see
Remark 2.4). It commutes by associativity of µ. It follows by functoriality of −⊗− that the top
composition is (x · y) · z while the bottom is x · (y · z), so they are equal as desired. To see that
e ∈ π0(E) is a left and right unit for this multiplication, consider the following diagram

Sa

E ⊗ E E E ⊗ E

E

x
e⊗x x⊗e

e⊗E E⊗e

µµ

Commutativity of the two top triangles is functoriality of −⊗−. Commutativity of the bottom
two triangles is unitality of µ. Thus the diagram commutes, so e · x = x = x · e. Finally, we wish
to show this product is bilinear (distributive). Suppose we further have some x′ ∈ πa(E) and
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y′ ∈ πb(E), and consider the following diagrams:

Sa+b Sa ⊗ Sb (Sa ⊕ Sa)⊗ Sb (E ⊕ E)⊗ E

Sa+b ⊕ Sa+b (Sa ⊗ Sb)⊕ (Sa ⊗ Sb) (E ⊗ E)⊕ (E ⊗ E) E ⊗ E E

Sa+b Sa ⊗ Sb Sb ⊗ (Sb ⊕ Sb) E ⊗ (E ⊕ E)

Sa+b ⊕ Sa+b (Sa ⊗ Sb)⊕ (Sa ⊗ Sb) (E ⊗ E)⊕ (E ⊗ E) E ⊗ E E

ϕa,b

∆

ϕa,b⊕ϕa,b

∆

∆⊗Sb

∼=

(x⊗y)⊕(x′⊗y)

(x⊕x′)⊗y

∼=

∇

∇⊗E

ϕa,b Sa⊗∆ x⊗(y⊕y′)

E⊗∇
∼=

∇

∼=

(x⊗y)⊕(x⊗y′)

∆∆

ϕa,b⊕ϕa,b

µ

µ

The unlabeled isomorphisms are those given by the fact that − ⊗ − is additive in each variable
(since SH is tensor triangulated). Commutativity of the left squares is naturality of ∆ : X →
X ⊕X in an additive category. Commutativity of the rest of the diagram follows again from the
fact that − ⊗ − is an additive functor in each variable. Hence, by functoriality of − ⊗ −, these
diagrams tell us that (x+ x′) · y = x · y+ x′ · y and x · (y+ y′) = x · y+ x · y′, respectively. Thus,
we have shown that if (E,µ, e) is a monoid object in SH then π∗(E) is a ring, as desired.

It remains to show that given a homomorphism of monoid objects f : (E1, µ1, e1) → (E2, µ2, e2)
in MonSH that π∗(f) : π∗(E1) → π∗(E2) is an A-graded ring homomorphism. First of all,
we know this is an A-graded abelian group homomorphism, since SH is an additive category,
meaning composition with f is an abelian group homomorphism. Thus, in order to show it’s a
ring homomorphism, it remains to show that π∗(f)(e1) = e2 and that for all x, y ∈ π∗(E) we have
π∗(f)(x · y) = π∗(f)(x) · π∗(f)(y). The former follows since π∗(f)(e1) = f ◦ e1 = e2, since f is
a monoid homomorphism in SH. To see the latter, first note by distributivity of multiplication
in π∗(E1) and π∗(E2) and the fact that π∗(f) is a group homomorphism, it suffices to consider
the case that x and y are homogeneous of the form x : Sa → E1 and y : Sb → E2. In this case,
consider the following diagram:

Sa+b Sa ⊗ Sb E1 ⊗ E1 E2 ⊗ E2

E1 E2

ϕa,b x⊗y f⊗f

µ2µ1

f

The top composition is π∗(f)(x) · π∗(f)(y), while the bottom composition is π∗(f)(x · y). The
diagram commutes since f is a monoid object homomorphism. Thus π∗(f)(x · y) = π∗(f)(x) ·
π∗(f)(y), as desired. □

The most important example of such a ring will be the stable homotopy ring π∗(S), which
controls essentially the entire structure of SH. We have shown that π∗ takes monoids to rings.
Next, we will show that given a monoid object (E,µ, e) in SH, the functor E∗ is valued in A-graded
left π∗(E)-modules. First, we prove the following lemma:

Lemma 4.2. Let X and Y be objects in SH. Then the A-graded pairing

π∗(X)× π∗(Y ) → π∗(X ⊗ Y )

sending x : Sa → X and y : Sb → Y to the composition

Sa+b
ϕa,b−−→ Sa ⊗ Sb

x⊗y−−−→ X ⊗ Y

is bilinear, i.e., it is additive in each argument.
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Proof. Let a, b ∈ A, and let x1, x2 : Sa → X and y : Sb → Y . Then consider the following
diagram

Sa+b Sa ⊗ Sb (Sa ⊕ Sa)⊗ Sb

(Sa ⊗ Sb)⊕ (Sa ⊗ Sb) (X ⊕X)⊗ Y

(X ⊗ Y )⊕ (X ⊗ Y ) X ⊗ Y

∆⊗Sb

∆ (x1⊕x2)⊗y

∇⊗Y(x1⊗y)⊕(x2⊗y)

∇

∼=

∼=

∼=

The isomorphisms are given by the fact that − ⊗ − is additive in each variable. Both triangles
and the parallelogram commute since − ⊗ − is additive. By functoriality of − ⊗ −, the top
composition is (x1 + x2) · y and the bottom composition is x1 · y + x2 · y, so they are equal, as
desired. An entirely analagous argument yields that x · (y1 + y2) = x · y1 + x · y2 for x ∈ π∗(X)
and y1, y2 ∈ π∗(Y ). □

Now we can show that E∗(X) is a graded module over π∗(E).

Proposition 4.3. Let (E,µ, e) be a monoid object in SH. Then E∗(−) is an additive functor from

SH to the category π∗(E)-ModA of left A-graded modules over the ring π∗(E) (Proposition 4.1)
and degree-preserving homomorphisms between them, where given some X in SH, E∗(X) may be
endowed with its canonical structure as a left A-graded π∗(E)-module via the map

π∗(E)× E∗(X) → E∗(X)

which given a, b ∈ A, sends x : Sa → E and y : Sb → E ⊗X to the composition

x · y : Sa+b
ϕa,b−−→ Sa ⊗ Sb

x⊗y−−−→ E ⊗ E ⊗X
µ⊗X−−−→ E ⊗X.

Similarly, the assignment X 7→ X∗(E) is a functor from SH to right A-graded π∗(E)-modules,
where the structure map

X∗(E)× π∗(E) → X∗(E)

sends x : Sa → X ⊗ E and y : Sb → E to the composition

x · y : Sa+b
ϕa,b−−→ Sa ⊗ Sb

x⊗y−−−→ X ⊗ E ⊗ E
X⊗µ−−−→ X ⊗ E.

Finally, E∗(E) is a π∗(E)-bimodule, in the sense that the left and right actions of π∗(E) are
compatible, so that given y, z ∈ π∗(E) and x ∈ E∗(E), y · (x · z) = (y · x) · z.

Proof. By Lemma B.9, in order to make the A-graded abelian group E∗(X) into a left A-graded
module over the A-graded ring π∗(E), it suffices to define the action map π∗(E)×E∗(X) → E∗(X)
only for homogeneous elements, and to show that given homogeneous elements x, x′ : Sa → E⊗X
in Ea(X), y : Sb → E in πb(E), and z, z′ : Sc → E in πc(E), that:

(1) y · (x+ x′) = y · x+ y · x′,
(2) (z + z′) · x = z · x+ z′ · x,
(3) (zy) · x = z · (y · x),
(4) e · x = x.
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Items (1) and (2) follow by the fact that E∗(X) = π∗(E⊗X) and Lemma 4.2. To see (3), consider
the diagram:

E ⊗ E ⊗X

Sa+b+c Sc ⊗ Sb ⊗ Sa E ⊗ E ⊗ E ⊗X E ⊗X

E ⊗ E ⊗X

∼= z⊗y⊗x

µ⊗E⊗X

E⊗µ⊗X
µ⊗X

µ⊗X

It commutes by associativity of µ. By functoriality of −⊗−, the two outside compositions equal
z · (y · x) on the top and (z · y) · x on the bottom. Hence, they are equal, as desired. Next, to see
(4), consider the following diagram:

Sa E ⊗X

E ⊗X

E ⊗ E ⊗X

e⊗E⊗X

x

µ⊗X

x

e⊗x

The top triangle commutes by definition. The left triangle commutes by functoriality of −⊗ −.
The right triangle commutes by unitality of µ. The top composition is x while the bottom is e ·x,
thus they are necessarily equal since the diagram commutes.

Thus, we have shown that the indicated map does indeed endow E∗(X) with the structure
of a left π∗(E)-module. Next we would like to show that E∗(−) sends maps in SH to A-graded
homomorphisms of left A-graded π∗(E)-modules. By definition, given f : X → Y in SH, E∗(f) =
[S∗, E ⊗ f ] is the map which takes a class x : Sa → E ⊗X to the composition

Sa
x−→ E ⊗X

E⊗f−−−→ E ⊗ Y.

Since SH is additive, composition is bilinear, so [S∗, E⊗ f ] is an A-graded group homomorphism
by definition. To see that it is a further a homomorphism of π∗(E)-modules, it suffices to show
that given classes x : Sa → E ⊗X and y : Sb → E that E∗(f)(y · x) = y ·E∗(f)(x). To that end,
consider the following diagram:

Sa+b Sb ⊗ Sa E ⊗ E ⊗X E ⊗ E ⊗ Y

E ⊗X E ⊗ Y

ϕb,a y⊗x E⊗E⊗f

µ⊗Yµ⊗X
E⊗f

It commutes by functoriality of − ⊗ −. The top composition is E∗(f)(y · x), while the bottom
composition is y · E∗(f)(x), so they are equal, as desired.

Thus, we’ve shown E∗(−) yields a functor SH → π∗(E)-ModA; it remains to show this functor
is additive, equivalently, Ab-enriched. This is clear, as given f, g : X → Y in SH, we have

E∗(f + g) = [S∗, E ⊗ (f + g)] = [S∗, (E ⊗ f) + (E ⊗ g)] = E∗(f) + E∗(g),

where the second equality follows since −⊗− is additive in each variable.
Showing that X∗(E) has the structure of a right π∗(E)-module and that if f : X → Y is a

morphism in SH then the map

X∗(E) = [S∗, X ⊗ E]
(f⊗E)∗−−−−−→ [S∗, Y ⊗ E] = Y∗(E)

is an A-graded homomorphism of right A-graded π∗(E)-modules is entirely analagous.
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It remains to show that E∗(E) is a π∗(E)-bimodule. Let x : Sa → E, y : Sb → E ⊗ E, and
z : Sc → E, and consider the following diagram:

E ⊗ E ⊗ E

Sa+b+c Sa ⊗ Sb ⊗ Sc E ⊗ E ⊗ E ⊗ E E ⊗ E

E ⊗ E ⊗ E

∼= x⊗y⊗z

µ⊗E⊗E

E⊗E⊗µ

µ⊗µ

E⊗µ

µ⊗E

Commutativity follows by functoriality of −⊗−, which also tells us that the two outside compo-
sitions are (x · y) · z (on top) and x · (y · z) (on bottom). Hence they are equal, as desired. □

Lemma 4.4. Let E and X be objects in SH. Then for all a ∈ A, there is an A-graded isomorphism
of A-graded abelian groups

taX : E∗(Σ
aX) ∼= E∗−a(X)

which sends a class x : Sb → E ⊗ ΣaX = E ⊗ Sa ⊗X to the composition

Sb−a
ϕb,−a−−−→ Sb⊗S−a x⊗S−a

−−−−−→ E⊗Sa⊗X⊗S−a E⊗τ⊗S−a

−−−−−−−→ E⊗X⊗Sa⊗S−a E⊗X⊗ϕ−1
a,−a−−−−−−−−→ E⊗X

with inverse (taX)
−1

: E∗−a(X) → E∗(Σ
aX) sending a class x : Sb−a → E⊗X to the composition

Sb
ϕb−a,a−−−−→ Sb−a ⊗ Sa

x⊗Sa

−−−−→ E ⊗X ⊗ Sa
E⊗τ−−−→ E ⊗ Sa ⊗X

(where here we are suppressing associators and unitors from the notation). Furthermore this
isomorphism is natural in X, and if E is a monoid object in SH then it is an isomorphism of left
π∗(E)-modules.

Proof. Expressed in terms of hom-sets, taX is precisely the composition

E∗(Σ
aX) [S∗, E ⊗ Sa ⊗X]

[S∗, E ⊗X ⊗ Sa]

[S∗ ⊗ S−a, E ⊗X ⊗ Sa ⊗ S−a]

[S∗ ⊗ S−a, E ⊗X]

[S∗−a, E ⊗X] E∗−a(E ⊗X)

(E⊗τ)∗

−⊗S−a

(E⊗X⊗ϕ−1
a,−a)∗

(ϕ∗,−a)
∗

We know the second vertical arrow is an isomorphism of abelian groups as − ⊗ − is additive in
each variable (since SH is tensor triangulated) and Ωa ∼= −⊗S−a is an autoequivalence of SH by
Proposition 2.7. The three other vertical arrows are given by composing with an isomorphism in
an additive category, so they are also isomorphisms. Now, note the proposed inverse constructed
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above can be factored into the following composition:

E∗−a(E ⊗X) [S∗−a, E ⊗X]

[S∗−a ⊗ Sa, E ⊗X ⊗ Sa]

[S∗, E ⊗X ⊗ Sa]

[S∗, E ⊗ Sa ⊗X] E∗(Σ
aX)

−⊗Sa

(ϕ∗−a,a)
∗

(E⊗τ)∗

It is entirely straightforward to check that this is an inverse to taX , and we leave it to the reader
to check this. (Since we already know taX is an isomorphism, it suffices to show this composition
is either a left or right inverse.)

Now, to see taX is a homomorphism of left π∗(E)-modules, suppose we are given classes r : Sb →
E in πb(E) and x : Sc → E⊗Sa⊗X in Ec(Σ

aX). Then we wish to show that taX(r ·x) = r ·taX(x).
To that end, consider the following diagram:

Sb+c−a E ⊗ Sa ⊗X ⊗ S−a E ⊗X ⊗ Sa ⊗ S−a

Sb ⊗ Sc ⊗ S−a E ⊗ E ⊗ Sa ⊗X ⊗ S−a E ⊗X

E ⊗ E ⊗X ⊗ Sa ⊗ S−a E ⊗ E ⊗X

∼=

r⊗x⊗S−a

E⊗E⊗τ⊗S−a

E⊗E⊗X⊗ϕ−1
a,−a

µ⊗X

E⊗τ⊗S−a

E⊗X⊗ϕ−1
a,−a

µ⊗X⊗Sa⊗S−a

µ⊗Sa⊗X⊗S−a

Both triangles commute by functoriality of − ⊗ −. The top composition is taX(r · x) while the
bottom is r · taX(x), so they are equal as desired.

It remains to show taX is natural in X. let f : X → Y in SH, then we would like to show the
following diagram commutes:

(1)

E∗(Σ
aX) E∗−a(X)

E∗(Σ
aY ) E∗−a(Y )

taX

E∗−a(f)E∗(Σ
af)

taY

We may chase a generator around the diagram since all the arrows here are homomorphisms. Let
x : Sb → E ⊗ Sa ⊗X in E∗(Σ

aX). Then consider the following diagram:

Sb−a Sb ⊗ S−a E ⊗ Sa ⊗X ⊗ S−a E ⊗X ⊗ Sa ⊗ S−a E ⊗X

E ⊗ Sa ⊗ Y ⊗ S−a E ⊗ Y ⊗ Sa ⊗ S−a E ⊗ Y

∼= x⊗S−a E⊗τ⊗S−a E⊗X⊗ϕ−1
a,−a

E⊗fE⊗Sa⊗f⊗S−a

E⊗τ⊗S−a E⊗Y⊗ϕ−1
a,−a

E⊗f⊗Sa⊗S−a

The left rectangle commutes by naturality of τ , while the right rectangle commutes by functoriality
of − ⊗ −. The two outside compositions are the two ways to chase x around diagram 1, so the
diagram commutes as desired. □
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4.2. Commutative monoid objects in SH and their associated rings. We have shown that
π∗(E) is an A-graded ring when (E,µ, e) is a monoid object in SH. A natural question that arises
is: In what sense is π∗(E) “graded commutative” if (E,µ, e) is a commutative monoid object in
SH? It turns out that it satisfies a rather strong commutativity condition. In this subsection, we
will show that π∗(E) is an A-graded anticommutative ring, in the following sense:

Definition 4.5. An A-graded anticommutative ring is an A-graded ring R along with an assign-
ment θ : A×A→ R×

0 sending (a, b) 7→ θa,b such that for all a, b, c ∈ A,

• θa,0 = θ0,a = 1,

• θ−1
a,b = θb,a,

• θa,b · θa,c = θa,b+c and θb,a · θc,a = θb+c,a, and
• for all homogeneous x and y in R,

x · y = y · x · θ|x|,|y|.
Given two A-graded anticommutative rings (R, θ) and (R′, θ′), an A-graded ring homomorphism
f : R → R′ is a homomorphism of A-graded anticommutative rings if it satisfies f ◦ θ = θ′. We
write GrCRingA for the resulting category.

In fact, the above definition was entirely motivated by the work we will do here. An interesting
fact is that the initial object in the category GrCRingA is the group algebra Z[A∧A] viewed as
an A-graded ring concentrated in degree 0, where here by “A∧A” we mean the quotient of A⊗ZA
by the subgroup generated by the elements a⊗ b+ b⊗a for a, b ∈ A. The element θa,b ∈ Z[A∧A]
is a∧ b = −b∧ a, where here a∧ b denotes the image of the element a⊗ b under the quotient map
A⊗Z A↠ A ∧A.

We will show that not only is π∗(E) an A-graded anticommutative ring, but it is an A-graded
anticommutative algebra over the stable homotopy ring π∗(S), defined as follows:

Definition 4.6. Given an A-graded anticommutative ring (R, θ) (Definition 4.5), we write

R-GCAA to denote the slice category (R, θ)/GrCRingA under (R, θ). Explicitly:

• The objects are pairs (S, φ) called A-graded anticommutative R-algebras, where S is an
A-graded ring and φ : R→ S is an A-graded ring homomorphism such that for all x ∈ Sa
and y ∈ Sb, we have

x · y = y · x · φ(θa,b),
• The morphisms (S, φ) → (S′, φ′) are A-graded ring homomorphisms f : S → S′ such that
f ◦ φ = φ′.

Note that our notation for the category R-GCAA is somewhat deficient, as there may be
multiple choices of families of units θa,b ∈ R0 satisfying the required properties which give rise to
strictly different categories, as the following example illustrates:

Example 4.7. Consider R = Z as a ring graded over A = Z concentrated in degree 0, and
let θn,m := (−1)n·m for all n,m ∈ Z, then R-GCAA is simply the standard category of graded
anticommutative rings, i.e., Z-graded rings R such that for all homogeneous x, y ∈ R, x · y =
y · x · (−1)|x||y|. On the other hand, if we instead define θn,m = 1 for all n,m ∈ Z, then the

resulting category R-GCAA becomes the category of strictly commutative Z-graded rings.

Like the standard category of Z-graded anticommutative rings, it turns out that the category
R-GCAA has many nice properties. In particular, in Appendix B.4 we show that R-GCAA

has finite coproducts and pushouts, and as in the standard category of (graded anti)commutative
rings, they are formed by taking the underlying tensor product of bimodules and endowing it with
a (graded anti)commutative multiplication. The details of this contruction are straightforward
but somewhat tedious, so even in the appendix we simply outline what needs to be shown, and
leave it to the reader to verify the minute details if they desire.
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The rest of this subsection will be devoted to proving that for each commutative monoid object
(E,µ, e) in SH, π∗(E) is an A-graded anticommutative algebra over the A-graded anticommu-
tative ring π∗(S), with structure map π∗(e) : π∗(S) → π∗(E). Before continuing, we explain
how these facts manifest themselves in the classical, motivic, and equivariant stable homotopy
categories:

Example 4.8 ([24, Proposition 0.1]). In the clasical stable homotopy category, given any com-
mutative ring spectrum (E,µ, e), π∗(E) is a Z-graded anticommutative ring in the standard sense,
i.e., θa,b = (−e)ab ∈ π0(E) for all a, b ∈ Z, so that the graded commutativity formula for π∗(E)
reads

x · y = y · x · (−1)|x||y|.

Example 4.9 ([10, pg. 3]). In the motivic stable homotopy category, there exists an element
ϵ ∈ π0,0(S) and a standard family of ϕa,b’s such that that π∗,∗(S) is a Z2-graded anticommu-

tative ring and the element θ(a1,a2),(b1,b2) ∈ π0,0(S) is given by (−1)
a1b1(−ϵ)a2b1−a1b2+a2b2 . In

particular, given a motivic ring spectrum (E,µ, e) and homogeneous elements x ∈ πa1,a2(E) and
y ∈ πb1,b2(E), we have

x · y = y · x · (−1)a1b1 · (e ◦ (−ϵ))a2b1−a1b2+a2b2 .

For motivic ring spectra (E,µ, e) such that e ◦ ϵ = −e (for example, for the motivic mod-p
Eilenberg-MacLane spectrum), this formula becomes

x · y = y · x · (−1)a1b1 .

For readers interested in learning more about the different possible graded anticommutativity
structures on π∗,∗(S) in the motivic stable homotopy category, we refer the reader to the paper
[10] of Dugger, Dundas, Isaksen, and Østvær. There also some of the graded anticommnutativity
properties of the C2-equivariant stable homotopy category are discussed in relation to the motivic
stable homotopy category (see Remarks 2 & 3). In general, the graded commutativity properties
of the G-equivariant stable homotopy category are highly dependent on the group G, and there
is not a standard choice of coherent family of ϕa,b’s in this setting. Thankfully, the literature
on equivariant stable homotopy theory is usually quite explicit about keeping track of the θa,b’s
(painfully, this is not the case in the motivic setting, where graded commutativity issues are often
sidelined).

Now, we continue on with our proof of the graded commutativity properties of π∗(E) in SH.
To start with, we identify the elements θa,b ∈ π0(S), and show they control anticommutativity in
π∗(E) for E a commutative monoid object:

Proposition 4.10. For all a, b ∈ A there exists an element θa,b ∈ π0(S) = [S, S] such that
given any commutative monoid object (E,µ, e) in SH, the A-graded ring structure on π∗(E)
(Proposition 4.1) has a commutativity formula given by

x · y = y · x · (e ◦ θa,b)

for all x ∈ πa(E) and y ∈ πb(E).

Proof. Given a, b ∈ A, define θa,b ∈ Aut(S) to be the composition

S
∼=−→ S−a−b ⊗ Sa ⊗ Sb

S−a−b⊗τ−−−−−−→ S−a−b ⊗ Sb ⊗ Sa
∼=−→ S,
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where the outermost maps are the unique maps specified by Remark 2.4. Now let (E,µ, e), x,
and y as in the statement of the proposition, and consider the following diagram

Sa+b Sa ⊗ Sb E ⊗ E

E

Sa+b Sb ⊗ Sa E ⊗ E

ϕ−1
b,a◦τ◦ϕa,b

ϕb,a

ϕa,b

τ τ

µ

y⊗x
µ

x⊗y

The left square commutes by definition. The middle square commutes by naturality of the sym-
metry isomorphism. Finally, the right square commutes by commutativity of E. Unravelling
definitions, we have shown that under the product on π∗(E) induced by the ϕa,b’s,

x · y = (y · x) ◦ (ϕ−1
b,a ◦ τ ◦ ϕa,b).

Thus, in order to show the desired result it further suffices to show that

(y · x) ◦ (ϕ−1
b,a ◦ τ ◦ ϕa,b) = y · x · (e ◦ θa,b).

Consider the following diagram:

Sa+b Sa ⊗ Sb

Sb ⊗ Sa ⊗ S−a−b ⊗ Sa ⊗ Sb Sb ⊗ Sa

Sb ⊗ Sa ⊗ S−a−b ⊗ Sb ⊗ Sa Sb ⊗ Sa Sa+b

E ⊗ E

E ⊗ E ⊗ E E ⊗ E

E ⊗ E E

∼=

ϕa,b

τ

ϕ−1
b,a

ϕb,a

∼=

∼=

E⊗E⊗e

Sb⊗Sa⊗S−a−b⊗τ

µ⊗E

E⊗µ

µ

µ

y⊗x

y⊗x⊗e

∼=

Here any map simply labelled ∼= is an appropriate composition of copies of ϕa,b’s, associators, and
their inverses, so that each of these maps are necessarily unique by Remark 2.4. The triangles in
the top large rectangle commutes by coherence for the ϕa,b’s. The parallelogram commutes by
naturality of τ and coherence of the of ϕa,b’s. The middle skewed triangle commutes by functori-
ality of −⊗−. The triangle below that commutes by unitality of µ. Finally, the bottom rectangle
commmutes by associativity of µ. Hence, by unravelling definitions and applying functoriality of
−⊗−, we get that the right composition is (y · x) ◦ (ϕ−1

b,a ◦ τ ◦ ϕa,b), while the left composition is

y · x · (e ◦ θa,b), so they are equal as desired. □

Now, it remains to show that the assignment θ : A2 → π0(S) descends/restricts to a group
homomorphism A ∧ A → π0(S)

×, i.e., that it satisfies the first three conditions outlined in
Definition 4.5. First, we prove the following useful lemma:

Lemma 4.11. Suppose we have homogeneous elements x, y ∈ π∗(S) with x of degree 0 (so x is
a map S → S and y is a map Sa → S for some a ∈ A), then we have x · y = y · x = x ◦ y (where
the · denotes the product given in Proposition 4.1).
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Proof. As morphisms, y is an arrow Sa → S for some a in A, and x is a morphism S → S. Then
consider the following diagram:

S ⊗ Sa Sa Sa ⊗ S

S ⊗ S S S ⊗ S

S ⊗ S S S ⊗ S

ϕa,0=ρ
−1
Sa

ϕ−1
0,0=λS

y

x

x⊗y

ϕ0,a=λ
−1
Sa

y⊗x

ϕ−1
0,0=ρS

S⊗y

x⊗S

y⊗S

S⊗x

λS=ρS ρS=λS

The trapezoids commute by naturality of the unitors, and the triangles commute by functoriality
of − ⊗ −. The outside compositions are y · x on the left and x · y on the right, and the middle
composition is x ◦ y, so indeed we have y · x = x · y = x ◦ y, as desired. □

Now, we will check the rest of the conditions in Definition 4.5 1-by-1.

Lemma 4.12. Given a ∈ A, we have θ0,a = θa,0 = idS.

Proof. Recall θa,0 is the composition

S
ϕ−a,a−−−−→ S−a⊗Sa S−a⊗ϕa,0−−−−−−→ S−a⊗ (Sa⊗S) S−a⊗τ−−−−→ S−a⊗ (S⊗Sa)

S−a⊗ϕ−1
0,a−−−−−−→ S−a⊗Sa

ϕ−1
−a,a−−−−→ S

By the coherence theorem for symmetric monoidal categories and the fact that ϕa,0 and ϕ0,a
coincide with the unitors, we have that the composition

Sa
ϕa,0=ρ

−1
Sa−−−−−−→ Sa ⊗ S

τ−→ S ⊗ Sa
ϕ−1
0,a=λSa

−−−−−−→ Sa

is precisely the identity map, so by functoriality of −⊗−, we have that θa,0 is the composition

S
ϕ−a,a−−−−→ S−a ⊗ Sa

=−→ S−a ⊗ Sa
ϕ−1
−a,a−−−−→ S.

Hence θa,0 = idS , as desired. An entirely analagous argument yields that θ0,a = idS . □

Lemma 4.13. Let a, b ∈ A. Then θa,b · θb,a = idS.

Proof. By Lemma 4.11, it suffices to show that θa,b◦θb,a = idS . To see this, consider the following
diagram:

S S−a−b ⊗ Sb ⊗ Sa S−a−b ⊗ Sa ⊗ Sb S

S−a−b ⊗ Sa ⊗ Sb

S−a−b ⊗ Sb ⊗ Sa

S

ϕ S−a−b⊗τ ϕ

ϕ

S−a−b⊗τ

ϕ

Here we are suppressing associators, and any map labelled ϕ is the appropriate composition of
ϕa,b’s, unitors, associators, identities, and their inverses (see Remark 2.4). Clearly each region
commutes, the middle by the fact that τ2 = id, and the other two regions by coherence for the
ϕ’s. Thus we have shown θa,b · θb,a = θa,b · θb,a = idS , as desired. □

Lemma 4.14. Let a, b, c ∈ A. Then θa,b · θa,c = θa,b+c and θb,a · θc,a = θb+c,a.
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Proof. First we show θa,b ·θa,c = θa,b+c. By Lemma 4.11, it suffices to show that θa,b◦θa,c = θa,b+c.
To see this, consider the following diagram:
(2)

S S−a−cSaSc S−a−cScSa S

(A) (B) (C)

S−a−b−cSaSb+c S−a−cS−bSaSbSc S−a−cScS−bSaSb S−a−bSaSb

(D) (E) (F)

S−a−b−cSb+cSa S−a−cS−bSbScSa S−a−cScS−bSbSa S−a−bSbSa

(G)

S−a−cScSa S−a−cScSa

(H)

S S

ϕ S−a−cτ ϕ

ϕ

S−a−bτ

ϕ

ϕϕ

S−a−b−cτ

S−a−cτ
S−bSaSb,Sc

ϕ

S−a−cScS−bτ

ϕ

ϕ

ϕ

ϕ

S−a−cS−bτ
Sa,SbSc

S−a−cτ
S−bSb,ScS

a

ϕ

ϕ ϕ

Here we are omitting ⊗ from the notation (so that the diagram fits on the page), and each
occurrence of an arrow labelled ϕ indicates it is the unique arrow that can be obtained as a
formal composition of tensor products of copies of ϕa,b’s, unitors, associators, and their inverses
(Remark 2.4). Clearly the composition going around the top and then the right is θa,b ◦θa,c while
the composition going left around the bottom is θa,b+c. Thus, we wish to show the above diagram
commutes.

Regions (A), (C), and (H) commute by coherence for the ϕ’s (see previous remark). Region (E)
commutes by coherence for the τ ’s. To see region (B) commutes, consider the following diagram,
which commutes by naturality of τ :

S−a−cSaSc S−a−cScSa

S−a−cSa−bSbSc S−a−cScSa−bSb

S−a−cS−bSaSbSc S−a−cScS−bSaSb

S−a−cτ

S−a−cϕa−b,bS
c S−a−cScϕa−b,b

S−a−cτ
Sa−bSb,Sc

S−a−cScϕ−b,aS
bS−a−cϕ−b,aS

bSc

S−a−cτ
S−bSaSb,Sc

To see region (D) commutes, note that it is simply the square

S−a−b−cSaSb+c S−a−cS−bSaSbSc

S−a−b−cSb+cSa S−a−cS−bSbScSa

S−a−b−cτ

ϕ−a−c,−bS
aϕb,c

ϕ−a−c,−bϕb,cS
a

S−a−cS−bτ
Sa,SbSc
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This diagram commutes by naturality of τ . To see region (F) commutes, consider the following
diagram, which commutes by functoriality of −⊗−:

S−a−cScS−bSaSb S−a−cSc−bSaSb S−a−bSaSb

S−a−cScS−bSbSa S−a−cSc−bSbSa S−a−bSbSa

S−a−bτ

ϕ−a−c,c−bS
bSa

ϕ−a−c,c−bS
aSb

S−a−cSc−bτ

S−a−cϕc,−bS
aSb

S−a−cScS−bτ

S−a−cϕc,−bS
bSa

Finally, to see region (G) commutes, consider the following diagram:

S−a−cS−bSbScSa S−a−cScS−bSbSa

S−a−cSScSa S−a−cScSSa

S−a−cScSa S−a−cScSa

S−a−cτ
S−bSb,ScS

a

S−a−cϕ−b,bS
cSa S−a−cScϕ−b,bS

a

S−a−cτS,ScSa

S−a−cϕ0,cS
a=S−a−cλ−1

Sc S
a S−a−cϕc,0S

a=S−a−cSρ−1
Sc S

a

The top region commutes by naturality of τ , while the bottom region commutes by coherence
for a symmetric monoidal category. Thus, we have shown that diagram (2) commutes, so that
θa,b · θa,c = θa,b+c, as desired. Now, to see that θb,a · θc,a = θb+c,a, note that

θb,a · θc,a
(∗)
= θ−1

a,b · θ
−1
a,c = (θa,c · θa,b)−1 = θ−1

a,b+c

(∗)
= θb+c,a,

where each occurrence of (∗) is Lemma 4.13. □

To recap, we have shown that the assignment θ : A2 → π0(S)
× satisfies the following for all

a, b, c ∈ A:

• θa,0 = θ0,a = 1,

• θ−1
a,b = θb,a,

• θa,b · θa,c = θa,b+c and θb,a · θc,a = θb+c,a, and
• for all homogeneous x and y in π∗(S),

x · y = y · x · θ|x|,|y|.
Thus, the stable homotopy ring π∗(S) is an A-graded anticommutative ring, as desired. Now, we
just have a few details left to check in order to conclude that π∗(E) is an A-graded anticommu-
tative π∗(S)-algebra for E a commutative monoid object in SH:

Proposition 4.15. The assignment (E,µ, e) 7→ (π∗(E), π∗(e)) yields a functor

π∗ : CMonSH → π∗(S)-GCAA

from the category of commutative monoid objects in SH (Definition C.3) to the category of A-
graded anticommutative π∗(S)-algebras (Definition 4.6).

Proof. By Proposition 4.1, we know that π∗ yields a functor from CMonSH to A-graded rings.
Furthermore, by Proposition 4.10, we know that for all homogeneous x, y ∈ π∗(E) that

x · y = y · x · (e ◦ θ|x|,|y|) = y · x · π∗(e)(θ|x|,|y|),
as desired. Thus, it remains to show that π∗(e) : π∗(S) → π∗(E) is an A-graded ring homomor-
phism for any (commutative) monoid object (E,µ, e) in SH, and that given a monoid homomor-
phism f : (E1, µ1, e1) → (E2, µ2, e2) in CMonSH, that π∗(f) satisfies π∗(f) ◦ π∗(e1) = π∗(e2).
The latter clearly holds, as since f is a monoid homomorphism, we have f ◦ e1 = e2, so that

π∗(f) ◦ π∗(e1) = π∗(f ◦ e1) = π∗(e2).
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Furthermore, since e : S → E is a monoid object homomorphism (Lemma C.6), we know that
π∗(e) : π∗(S) → π∗(E) is an A-graded ring homomorphism by Proposition 4.1. □

5. Some important theorems in SH

So far, we have already identified a good amount of structure on the objects π∗(E), E∗(E) =
π∗(E ⊗ E), and E∗(X) for E a (commutative) monoid object and X an object in SH. Namely,
we have shown that π∗(E) and E∗(E) = π∗(E ⊗ E) are canonically A-graded anticommutative
algebras over the stable homotopy ring (Proposition 4.15), and that E∗(X) is canonically an
A-graded left π∗(E)-module (Proposition 4.3). We would like to identify even more structure on
these objects, namely, in Section 6, we will show that the pair (E∗(E), π∗(E)) is an A-graded
anticommutative Hopf algebroid, over which E∗(X) is an A-graded left comodule. To that end,
we need two important theorems, namely, we need analogs of the Künneth isomorphism and the
universal coefficient theorem from algebraic topology. This section is dedicated to formulating
and proving these theorems. The proofs of these theorems are arguably the most technical and
difficult in this paper, so we will be especially careful to give them in their full and explicit detail.

5.1. A Künneth isomorphism. The goal of this subsection will be to prove the following
theorem, which, given a monoid object (E,µ, e) and objects Z and W in SH, relates the Z-
homology of E and the E-homology of W to π∗(Z ⊗ E ⊗W ):

Theorem 5.1 (The Künneth isomorphism). Let (E,µ, e) be a monoid object and Z andW objects
in SH. Then if

• Z∗(E) is a flat right π∗(E)-module (via Proposition 4.3) and W is cellular (Defini-
tion 3.1), or

• E∗(W ) is a flat left π∗(E)-module (via Proposition 4.3) and Z is cellular,

then there is a natural A-graded isomorphism of A-graded abelian groups, called the Künneth
isomorphism:

ΦZ,W : Z∗(E)⊗π∗(E) E∗(W )
∼=−→ π∗(Z ⊗ E ⊗W ).

There is much work to be done. First, we construct the map and show it is natural:

Proposition 5.2. Let (E,µ, e) be a monoid object and Z and W be objects in SH. Then there
is an A-graded homomorphism of abelian groups

ΦZ,W : Z∗(E)⊗π∗(E) E∗(W ) → π∗(Z ⊗ E ⊗W )

which given homogeneous elements x : Sa → Z ⊗ E in Z∗(E) = π∗(Z ⊗ E) and y : Sb → E ⊗W
in E∗(W ) = π∗(E⊗W ), sends the homogeneous pure tensor x⊗ y in Z∗(E)⊗π∗(E)E∗(W ) to the
composition

ΦZ,W (x⊗ y) : Sa+b
ϕa,b−−→ Sa ⊗ Sb

x⊗y−−−→ Z ⊗ E ⊗ E ⊗W
Z⊗µ⊗W−−−−−−→ Z ⊗ E ⊗W

Furthermore, this homomorphism is natural in both Z and W .

Proof. By Lemma B.14, in order to get an A-graded homomorphism

ΦZ,W : Z∗(E)⊗π∗(E) E∗(W ) → π∗(Z ⊗ E ⊗W ),

it suffices to define an assignment P : Z∗(E)×E∗(W ) → π∗(Z⊗E⊗W ) on homogeneous elements
(which we have), and show that it is additive in each argument for homogeneous elements of
the same degree, and that for all homogeneous z ∈ Z∗(E), r ∈ π∗(E), and w ∈ E∗(W ) that
P (zr, w) = P (z, rw), where concatenation denotes the module action.

First, note that by Lemma 4.2 it is straightforward to see that the assignment commutes with
addition of maps of the same degree in each argument. Now, let a, b, c ∈ A, z : Sa → Z ⊗ E,
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w : Sb → E ⊗W , and r : Sc → E. Then we wish to show P (zr, w) = P (z, rw). Consider the
following diagram (where here we are passing to a symmetric strict monoidal category):

Z ⊗ E ⊗ E ⊗W

Sa+b+c Sa ⊗ Sc ⊗ Sb Z ⊗ E ⊗ E ⊗ E ⊗W Z ⊗ E ⊗W

Z ⊗ E ⊗ E ⊗W

∼= z⊗r⊗w

Z⊗µ⊗E⊗W
Z⊗µ⊗W

Z⊗E⊗µ⊗W
Z⊗µ⊗W

It commutes by associativity of µ. By functoriality of − ⊗ −, the top composition is given
by P (zr, w) and the bottom composition is P (z, rw), so they are equal as desired. Thus, by
Lemma B.14 we get the desired A-graded homomorphism π∗(Z⊗E)⊗π∗(E) π∗(E⊗W ) → π∗(Z⊗
E ⊗W ).

Next, we would like to show that this homomorphism is natural in Z. Let f : Z → Z ′ in SH.
Then we would like to show the following diagram commutes:

(3)

π∗(Z ⊗ E)⊗π∗(E) π∗(E ⊗W ) π∗(Z ⊗ E ⊗W )

π∗(Z
′ ⊗ E)⊗π∗(E) π∗(E ⊗W ) π∗(Z

′ ⊗ E ⊗W )

π∗(f⊗E)⊗π∗(E⊗W )

ΦZ′,W

π∗(f⊗E⊗W )

ΦZ,W

As all the maps here are homomorphisms, in order to show it commutes, it suffices to chase
generators around the diagram. In particular, suppose we are given z : Sa → Z ⊗ E and
w : Sb → E ⊗W , and consider the following diagram exhibiting the two possible ways to chase
z ⊗ w around the diagram (as usual, we are passing to a symmetric strict monoidal category):

Sa+b Sa ⊗ Sb Z ⊗ E ⊗ E ⊗W Z ⊗ E ⊗W

Z ⊗ E ⊗ E ⊗W Z ′ ⊗ E ⊗W

ϕa,b z⊗w Z⊗µ⊗W

f⊗E⊗Wf⊗E⊗E⊗W
Z⊗µ⊗W

This diagram commutes by functoriality of − ⊗ −. Thus we have that diagram (3) does indeed
commute, so that ΦZ,W is natural in Z as desired. Showing that ΦZ,W is natural in W is entirely
analagous. □

Now, before proving the Künneth map is an isomorphism under the conditions given in Theo-
rem 5.1, we prove the following lemmas:

Lemma 5.3. Let (E,µ, e) be a monoid object and Z and W be objects in SH. Then for all a ∈ A,
the following diagram commutes

Z∗(E)⊗π∗(E) E∗(Σ
aW ) Z∗(E)⊗π∗(E) E∗−a(W )

π∗(Z ⊗ E ⊗ ΣaW ) π∗−a(Z ⊗ E ⊗W )

(Z ⊗ E)∗(Σ
aW ) (Z ⊗ E)∗−a(W )

Z∗(E)⊗π∗(E)t
W
a

ΦZ,WΦZ,ΣaW

tWa

where the maps ta are constructed and proven to be A-graded isomorphisms of abelian groups in
Lemma 4.4.
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Proof. Note that in Lemma 4.4, it is shown that tWa : E∗(Σ
aW ) → E∗−a(W ) is not just an

A-graded isomorphism of abelian groups, but it is furthermore a left π∗(E)-module isomorphism.
Thus, the top arrow in the above diagram is well-defined. Since all the arrows involved are
A-graded homomorphisms, in order to show the diagram commutes it suffices to chase a pure
homogeneous tensor around, as they generate the top left object. To that end, let x : Sb → Z⊗E
in Z∗(E) and y : Sc → E ⊗ Sa ⊗W in E∗(Σ

aW ), and consider the following diagram exhibiting
the two ways to chase x⊗ y around:

Sb+c−a Z ⊗ E ⊗ E ⊗W ⊗ Sa ⊗ S−a Z ⊗ E ⊗ E ⊗W

Sb ⊗ Sc ⊗ S−a Z ⊗ E ⊗ E ⊗ Sa ⊗W ⊗ S−a Z ⊗ E ⊗W

Z ⊗ E ⊗ Sa ⊗W ⊗ S−a Z ⊗ E ⊗W ⊗ Sa ⊗ S−a

ϕ

x⊗y⊗S−a

Z⊗E⊗E⊗τ⊗S−a

Z⊗E⊗E⊗W⊗ϕ−1
a,−a

Z⊗µ⊗W

Z⊗µ⊗Sa⊗W⊗S−a

Z⊗E⊗τ⊗S−a

Z⊗E⊗W⊗ϕ−1
a,−a

Z⊗µ⊗W⊗Sa⊗S−a

Each triangle commutes by functoriality of −⊗−, so the diagram commutes as desired. □

Lemma 5.4. Given a monoid object (E,µ, e) and an object X in SH, for all a ∈ A the A-graded
isomorphisms

saX⊗E : π∗(Σ
aX ⊗ E) → π∗−a(X ⊗ E)

from Definition 2.9 are isomorphisms of right π∗(E)-modules, where here π∗(Σ
aX ⊗ E) and

π∗(X ⊗ E) = X∗(E) are considered with their canonical right π∗(E)-module structure given in
Proposition 4.3.

Proof. By additivity, in order to show saX⊗E is a homomorphism of right π∗(E)-modules, it suffices

to show that for all homogeneous x : Sb → Sa⊗X ⊗E in π∗(Σ
aX ⊗E) and r : Sb → E in π∗(E)

that saX⊗E(x · r) = saX⊗E(x) · r. To that end, consider the following diagram:

Sb+c−a S−a ⊗ Sb ⊗ Sc S−a ⊗ Sa ⊗X ⊗ E ⊗ E S−a ⊗ Sa ⊗X ⊗ E

X ⊗ E ⊗ E X ⊗ E

ϕ S−a⊗x⊗r

ϕ−1
−a,a⊗X⊗E⊗E

X⊗µ

S−a⊗Sa⊗X⊗µ

ϕ−1
−a,a⊗X⊗E

The top composition is saX⊗E(x · r), while the bottom composition is saX⊗E(x) · r. The diagram
commutes by functoriality of −⊗−, so that saX⊗E(x · r) = saX⊗E(x) · r as desired, meaning saX⊗E
is indeed a right π∗(E)-module homomorphism. □

Lemma 5.5. Let (E,µ, e) be a monoid object and Z and W objects in SH, and suppose the
Künneth map ΦZ,W is an isomorphism. Then ΦΣaZ,W and ΦZ,ΣaW are isomorphisms for all
a ∈ A, and so are ΦΣZ,W an ΦZ,ΣW .

Proof. If ΦZ,W is an isomorphism, it follows that ΦZ,ΣaW is an isomorphism by Lemma 5.3. On
the other hand, in order to see ΦΣaZ,W is an isomorphism, consider the following diagram:

(4)

π∗(Σ
aZ ⊗ E)⊗π∗(E) π∗(E ⊗W ) π∗(Σ

aZ ⊗ E ⊗W )

π∗−a(Z ⊗ E)⊗π∗(E) π∗(E ⊗W ) π∗−a(Z ⊗ E ⊗W )

ΦΣaZ,W

saZ⊗E⊗π∗(E)π∗(E⊗W ) saZ⊗E⊗W

ΦZ,W
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Here the vertical arrows are induced via the isomorphisms constructed in Definition 2.9, and
the left vertical arrow is well-defined since saZ⊗E is a right π∗(E)-module homomorphism by
Lemma 5.4. Since every arrow in diagram (4) is an isomorphism of abelian groups except the top
arrow, in order to show ΦΣaZ,W is an isomorphism, it suffices to show the diagram commutes. To
that end, since all the arrows are homomorphisms, it suffices to chase a pure homogeneous tensor
around. So let x : Sb → ΣaZ⊗E and y : Sc → E⊗W , and consider the following diagram whose
outside compositions exhibit the two ways to chase the pure tensor x⊗ y around diagrama (4):

Sb+c−a S−a ⊗ Sb ⊗ Sc S−a ⊗ Sa ⊗ Z ⊗ E ⊗ E ⊗W S−a ⊗ Sa ⊗ Z ⊗ E ⊗W

Z ⊗ E ⊗ E ⊗W Z ⊗ E ⊗W

ϕ S−a⊗x⊗y S−a⊗Sa⊗Z⊗µ⊗W

ϕ−1
−a,a⊗Z⊗E⊗Wϕ−1

−a,a⊗Z⊗E⊗E⊗W
Z⊗µ⊗W

The diagram commutes by functoriality of −⊗−, so that diagram (4) commutes, meaning ΦΣaZ,W

is an isomorphism as desired.
Now, it remains to show that ΦZ,ΣW and ΦΣZ,W are isomorphisms. To that end, consider the

following diagram:

π∗(Z ⊗ E)⊗π∗(E) π∗(E ⊗ ΣW ) π∗(Z ⊗ E ⊗ ΣW )

π∗(Z ⊗ E)⊗π∗(E) π∗(E ⊗ Σ1W ) π∗(Z ⊗ E ⊗ Σ1W )

π∗(Z⊗E)⊗π∗(E)π∗(E⊗νW )

ΦZ,Σ1W

ΦZ,ΣW

π∗(Z⊗E⊗νW )

It commutes by naturality of Φ. Furthermore, assuming ΦZ,W is an isomorphism, by what we
have shown above we know that ΦZ,Σ1W is an isomorphism, and since νW is an isomorphism, it
follows that the above diagram commutes and all arrows except ΦZ,ΣW are isomorphisms, so that
ΦZ,ΣW must be an isomorphism itself. Finally, an entirely analagous argument using naturality
of Φ with respect to νZ yields that ΦΣZ,W is an isomorphism as well. □

Now, we can finally prove the desired theorem:

Proposition 5.6. Let (E,µ, e) be a monoid object and Z and W objects in SH. Then if either:

(1) Z∗(E) is a flat right π∗(E)-module (via Proposition 4.3) and W is cellular (Defini-
tion 3.1), or

(2) E∗(W ) is a flat left π∗(E)-module (via Proposition 4.3) and Z is cellular,

then the natural homomorphism

ΦZ,W : Z∗(E)⊗π∗(E) E∗(W ) → π∗(Z ⊗ E ⊗W )

given in Proposition 5.2 is an isomorphism of abelian groups.

Proof. In this proof, we will freely employ the coherence theorem for symmetric monoidal cate-
gories, and we will assume that associativity and unitality of − ⊗ − holds up to strict equality.
First we will consider the case that π∗(Z ⊗ E) = Z∗(E) is a flat right π∗(E)-module and W is
cellular. To start, let E be the collection of objects W in SH for which ΦZ,W is an isomorphism.
Then in order to show E contains every cellular object, it suffices to show that E satisfies the
three conditions given for the class of cellular objects in Definition 3.1. First, we need to show
that ΦZ,W is an isomorphism when W = Sa for some a ∈ A. Indeed, consider the A-graded
homomorphism

Ψ : π∗(Z ⊗ E ⊗ Sa) → π∗(Z ⊗ E)⊗π∗(E) π∗(E ⊗ Sa)
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which sends a class x : Sb → Z ⊗ E ⊗ Sa in πb(Z ⊗ E ⊗ Sa) to the pure tensor x̃ ⊗ ẽ, where
x̃ ∈ πb−a(Z ⊗ E) is the composition

Sb−a
ϕb,−a−−−→ Sb ⊗ S−a x⊗S−a

−−−−−→ Z ⊗ E ⊗ Sa ⊗ S−a Z⊗E⊗ϕ−1
a,−a−−−−−−−−→ Z ⊗ E

and ẽ ∈ πa(E ⊗ Sa) is the composition

Sa
e⊗Sa

−−−→ E ⊗ Sa.

In order to see Ψ is an (A-graded) homomorphism of abelian groups: Given x, x′ ∈ πb(Z⊗E⊗Sa),
we would like to show that x̃⊗ ẽ+ x̃′ ⊗ ẽ = x̃+ x′ ⊗ ẽ. It suffices to show that x̃+ x̃′ = x̃+ x′.
To see this, consider the following diagram (again, we are passing to a symmetric strict monoidal
category):

Sb−a Sb−a ⊕ Sb−a

Sb ⊗ S−a (Sb ⊗ S−a)⊕ (Sb ⊗ S−a)

(Sb ⊕ Sb)⊗ S−a (Z ⊗ E ⊗ Sa ⊗ S−a)⊕ (Z ⊗ E ⊗ Sa ⊗ S−a)

((Z ⊗ E ⊗ Sa)⊕ (Z ⊗ E ⊗ Sa))⊗ S−a (Z ⊗ E)⊕ (Z ⊗ E)

Z ⊗ E ⊗ Sa ⊗ S−a Z ⊗ E

∆

ϕb,−a⊕ϕb,−a

(x⊗S−a)⊕(x′⊗S−a)

(Z⊗E⊗ϕ−1
a,−a)⊕(Z⊗E⊗ϕ−1

a,−a)

∇

ϕb−a

∆⊗S−a

(x⊕x′)⊗S−a

∇⊗S−a

Z⊗E⊗ϕ−1
a,−a

∼=

∼=

∇

∆

The top rectangle commutes by naturality of ∆ in an additive category. The bottom triangle
commutes by naturality of ∇ in an additive category. Finally, the remaining regions of the
diagram commute by additivity of − ⊗ −. By functoriality of − ⊗ −, it follows that the left

composition is x̃+ x′ and the right composition is x̃ + x̃′, so they are equal as desired. Thus Ψ
is a homomorphism of abelian groups, as desired.

Now, we claim that Ψ is an inverse to ΦZ,Sa . Since ΦZ,Sa and Ψ are homomorphisms it suffices
to check that they are inverses on generators. First, let x : Sb → Z ⊗E ⊗ Sa in πb(Z ⊗E ⊗ Sa).
We would like to show that ΦZ,Sa(Ψ(x)) = x. Consider the following diagram, where here we are
passing to a symmetric strict monoidal category:

Sb Sb ⊗ S−a ⊗ Sa

Z ⊗ E ⊗ Sa ⊗ S−a ⊗ Sa Z ⊗ E ⊗ Sa ⊗ S−a ⊗ E ⊗ Sa

Z ⊗ E ⊗ Sa Z ⊗ E ⊗ Sa

Z ⊗ E ⊗ E ⊗ Sa

∼=

x⊗S−a⊗e⊗Sa

x

x⊗S−a⊗Sa

Z⊗E⊗Sa⊗ϕ−a,a
Z⊗E⊗Sa⊗S−a⊗e⊗Sa

Z⊗E⊗ϕa,−a⊗Sa

Z⊗E⊗e⊗Sa

Z⊗E⊗ϕ−1
a,−a⊗E⊗Sa

Z⊗µ⊗Sa

The top left trapezoid commutes since the isomorphism Sb
∼=−→ Sb ⊗ S−a ⊗ Sa may be given as

Sb ⊗ ϕ−a,a (see Remark 2.4), in which case the trapezoid commmutes by functoriality of −⊗−.
The triangle below that commutes by coherence for the ϕa,b’s. The bottom left triangle commutes
by unitality for µ. The top right triangle commutes by functoriality of −⊗−. Finally, the bottom
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right triangle commutes by functoriality of − ⊗ −. It follows by unravelling definitions that the
two outside compositions are x and ΦZ,Sa(Ψ(x)), so indeed we have ΦZ,Sa(Ψ(x)) = x since the
diagram commutes.

On the other hand, suppose we are given a homogeneous pure tensor x⊗y in π∗(Z⊗E)⊗π∗(E)

π∗(E ⊗ Sa), so x : Sb → Z ⊗ E and y : Sc → E ⊗ Sa for some b, c ∈ A. Then we would like to
show that Ψ(ΦZ,Sa(x⊗ y)) = x⊗ y. Unravelling definitions, Ψ(ΦZ,Sa(x⊗ y)) is the homogeneous
pure tensor x̃y⊗ ẽ, where ẽ is the map e⊗Sa : Sa → E⊗Sa is defined above, and by functoriality
of −⊗−, x̃y : Sb+c−a → Z ⊗ E is the composition

Sb+c−a

Sb ⊗ Sc ⊗ S−a

Z ⊗ E ⊗ E ⊗ Sa ⊗ S−a

Z ⊗ E ⊗ Sa ⊗ S−a

Z ⊗ E

∼=

x⊗y⊗S−a

Z⊗µ⊗Sa⊗S−a

Z⊗E⊗ϕ−1
a,−a

Now, define r ∈ πc−a(E) to be the composition

Sc−a ∼= Sc ⊗ S−a y⊗S−a

−−−−→ E ⊗ Sa ⊗ S−a E⊗ϕ−1
a,−a−−−−−−→ E.

First, we claim that x · r = x̃y. To that end, consider the following diagram, where here we are
again passing to a symmetric strict monoidal category:

Sb+c−a Sb ⊗ Sc ⊗ S−a Z ⊗ E ⊗ E ⊗ Sa ⊗ S−a Z ⊗ E ⊗ Sa ⊗ S−a

Z ⊗ E ⊗ E Z ⊗ E

∼= x⊗y⊗S−a Z⊗µ⊗Sa⊗S−a

Z⊗E⊗E⊗ϕ−1
a,−a

Z⊗µ

Z⊗E⊗ϕ−1
a,−a

Commutativity is functoriality of − ⊗ −, which also tells us that the two outside compositions
are x̃y (on top) and x · r (on the bottom), so they are equal as desired. On the other hand, we
claim that r · ẽ = y. To see this, consider the following diagram:

Sc Sc ⊗ S−a ⊗ Sa

E ⊗ Sa ⊗ S−a ⊗ Sa E ⊗ Sa ⊗ S−a ⊗ E ⊗ Sa

E ⊗ Sa E ⊗ Sa

E ⊗ E ⊗ Sa E ⊗ E ⊗ Sa

∼=

y⊗S−a⊗e⊗Sa

µ⊗Sa

y

E⊗Sa⊗S−a⊗e⊗Sa

E⊗Sa⊗ϕ−1
−a,a

E⊗ϕ−1
a,−a⊗E⊗Sa

y⊗S−a⊗Sa

E⊗ϕ−1
a,−a⊗S

a

E⊗e⊗Sa

By Remark 2.4, we may take the top arrow to be Sc ⊗ ϕ−a,a, in which case the top left triangle
commutes by functoriality of − ⊗ −. The bottom trapezoid commutes by unitality of µ. Every
other region commutes either by definition or by functoriality of −⊗−. The top composition is
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r · ẽ, so we have shown r · ẽ = y as desired. Thus, we have that

Ψ(ΦZ,Sa(x⊗ y)) = x̃y ⊗ ẽ = x · r ⊗ ẽ = x⊗ r · ẽ = x⊗ y,

as desired. Hence we have shown Ψ is both a left and right inverse for ΦZ,Sa , so that indeed Sa

belongs to E as desired.
Now, we would like to show that given a distinguished triangle in SH

X
f−→ Y

g−→W
h−→ ΣX,

if two of three of the objects X, Y , and W belong to E, then so does the third. From now
on, write LE∗ to denote the functor from SH to A-graded abelian groups sending X 7→ π∗(Z ⊗
E)⊗π∗(E) π∗(E⊗X). Then ΦZ,− is a natural transformation LE∗ ⇒ π∗(Z⊗E⊗−) = Z∗(E⊗−).
First, recall that it follows generally that in an adjointly triangulated category (Definition 2.8),
which SH is by Proposition 2.7, given a distinguished triangle (f, g, h) we have a long exact
sequence (see Definition A.1 for the definition of an exact sequence in an additive category, and
see Proposition A.9 for the explicit contruction of the LES associated to a distinguished triangle
in an adjointly triangulated category):

ΩY
Ωg−−→ ΩW

h̃−→ X
f−→ Y

g−→W
h−→ ΣX

Σf−−→ ΣY,

where h̃ : ΩW → X is the adjoint of h :W → ΣX. Then since SH is further a tensor triangulated
category (Definition 2.2), we have that the above sequence remains exact even after tensoring by
E on the left (see Proposition A.11 for details), so we have the following exact sequence in SH:

E ⊗ ΩY
E⊗Ωg−−−−→ E ⊗ ΩW

E⊗h̃−−−→ E ⊗X
E⊗f−−−→ E ⊗ Y

E⊗g−−−→ E ⊗W
E⊗h−−−→ E ⊗ ΣX

E⊗Σf−−−−→ E ⊗ ΣY.

We can then apply [S∗,−] = π∗(−) to it, which yields the following exact sequence of A-graded
abelian groups:

E∗(ΩY )
E∗(Ωg)−−−−−→ E∗(ΩW )

E∗(h̃)−−−−→ E∗(X)
E∗(f)−−−−→ E∗(Y )

E∗(g)−−−−→ E∗(W )
E∗(h)−−−−→ E∗(ΣX)

E∗(f)−−−−→ E∗(ΣY ).

Now, we can tensor this sequence with π∗(Z ⊗E) on the left over π∗(E), and since π∗(Z ⊗E) is
a flat right π∗(E) module, we get that the top row in the following diagram is exact:

LE∗ (ΩY ) LE∗ (ΩW ) LE∗ (X) LE∗ (Y ) LE∗ (W ) LE∗ (ΣX) LE∗ (ΣY )

Z∗(E ⊗ ΩY ) Z∗(E ⊗ ΩW ) Z∗(E ⊗X) Z∗(E ⊗ Y ) Z∗(E ⊗W ) Z∗(E ⊗ ΣX) Z∗(E ⊗ ΣY )

LE
∗ (Ωg) LE

∗ (h̃) LE
∗ (f) LE

∗ (g) LE
∗ (h) LE

∗ (Σf)

ΦZ,ΩY

Z∗(E⊗Ωg) Z∗(E⊗h) Z∗(E⊗Σf)

ΦZ,ΩW

Z∗(E⊗f)

ΦZ,X ΦZ,Y

Z∗(E⊗g)

ΦZ,W ΦZ,ΣX ΦZ,ΣY

Z∗(E⊗h̃)

This diagram further commutes by naturality of ΦZ,−. Now, supposing that two of three of X,
Y , and W belong to E, by Lemma 5.5, if ΦZ,V is an isomorphism for some object V in SH then
ΦZ,ΩV and ΦZ,ΣV are. Thus by the five lemma, it follows that the middle three vertical arrows
in the above diagram are necessarily all isomorphisms if any two of them are, so we have shown
that E is closed under two-of-three for exact triangles, as desired.

Finally, it remains to show that E is closed under arbitrary coproducts. Let {Wi}i∈I be a
collection of objects in E indexed by some set I. Then we’d like to show that W :=

⊕
iWi

belongs to E. First of all, note that −⊗− preserves arbitrary coproducts in each argument, as it
has a right adjoint F (−,−). Thus without loss of generality, given any object X in SH, we may
take

⊕
iX ⊗Wi = X ⊗

⊕
iWi (as X ⊗

⊕
iWi is a coproduct of all the X ⊗Wi’s). Now, recall

that we have chosen each Sa to be a compact object (Definition 2.5), so that given any object X
and collection of objects {Yi}i∈I in SH, if Y :=

⊕
i∈I Yi, then the canonical map

qX,Yi :
⊕
i

X∗(Yi) =
⊕
i

[S∗, X ⊗ Yi] → [S∗,
⊕
i

X ⊗ Yi] = [S∗, X ⊗ Y ] = X∗(Y )
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is an isomorphism, natural in Yi for each i. Note in particular that qE,Wi
is an isomorphism

of left π∗(E)-modules. To see this, first note by additivity of qE,Wi
, it suffices to check that

qE,Wi(r · x) = r · qE,Wi(x) for each homogeneous r ∈ π∗(E) and homogeneous x ∈ E∗(Wi) for
some i, as such x generate

⊕
iE∗(Wi) by definition. Then given r : Sa → E and x : Sb → E⊗Wi,

consider the following diagram

Sa+b Sa ⊗ Sb E ⊗ E ⊗Wi E ⊗
⊕

i(E ⊗Wi)

E ⊗ E ⊗W

E ⊗W

E ⊗Wi

⊕
i(E ⊗Wi)

ϕa,b x⊗y E⊗ιE⊗Wi

µ⊗Wi

ιE⊗Wi

E⊗ιWi

E⊗E⊗ιWi

µ⊗W

where ιE⊗Wi : E ⊗Wi ↪→
⊕

i(E ⊗Wi) and ιWi : Wi ↪→
⊕

iWi are the maps determined by
the definition of the coproduct. Commutativity of the two triangles is by the fact that E ⊗− is
colimit preserving. Commutativity of the trapezoid is functoriality of − ⊗ −. Thus, since qE,Wi

is a homomorphism of left A-graded π∗(E)-modules, the top right arrow in the following diagram
is well-defined:

(5)

⊕
i Z∗(E)⊗π∗(E) E∗(Wi) Z∗(E)⊗π∗(E)

⊕
iE∗(Wi) Z∗(E)⊗π∗(E) E∗(W )

⊕
i Z∗(E ⊗Wi) Z∗(

⊕
iE ⊗Wi) Z∗(E ⊗W )

Z∗(E)⊗π∗(E)qE,Wi

ΦZ,W

qZ,E⊗Wi

⊕
i ΦZ,Wi

We wish to show this diagram commutes. Again, since each map here is a homomorphism, it
suffices to chase generators. By definition, a generator of the top left element is a homogeneous
pure tensor in E∗(E)⊗π∗(E) E∗(Wi) for some i in I. Given classes x : Sa → Z ⊗E in Z∗(E) and

y : Sb → E ⊗Wi in E∗(Wi), consider the following diagram:

Sa+b Sa ⊗ Sb Z ⊗ E ⊗ E ⊗Wi Z ⊗ E ⊗
⊕

iE ⊗Wi

Z ⊗ E ⊗Wi Z ⊗ E ⊗ E ⊗W

⊕
i Z ⊗ E ⊗Wi Z ⊗ E ⊗W

ϕa,b x⊗y Z⊗E⊗ιE⊗Wi

Z⊗µ⊗Wi

Z⊗µ⊗WιZ⊗E⊗Wi Z⊗E⊗ιWi

Z⊗E⊗E⊗ιWi

Unravelling definitions, the two outside compositions are the two ways to chase x ⊗ y around
diagram (5). The two triangles commute again by the fact that −⊗− preserves colimits in each
argument. Commutativity of the inner parallelogram is functoriality of − ⊗ −. Thus diagram
(5) tells us ΦZ,W is an isomorphism, since qE,Wi

and qZ,E⊗Wi
are isomorphisms, and ΦZ,Wi

is an
isomorphism for each i in I, meaning

⊕
iΦWi is as well.

Thus, we’ve shown the class E of objectsW for which ΦZ,W is an isomorphism contains the Sa’s,
is closed under two-of-three for distinguished triangles, and is closed under arbitrary coproducts.
Thus, it follows that E contains the class of all cellular objects in SH, as desired.

Now, suppose that π∗(E ⊗W ) is a flat left π∗(E)-module, then we’d like to show ΦZ,W is an
isomorphism for all cellular Z in SH. Showing this is entirely analagous to above, so we only
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outline the argument. Let E be the class of Z in SH such that ΦZ,W is an isomorphism. Then in
order to show E contains every cellular object, it suffices to show it contains the Sa’s, is closed
under two-of-three for distinguished triangles, and is closed under arbitrary coproducts.

To see E contains the Sa’s, consider the map

Ψ : π∗(S
a ⊗ E ⊗W ) → π∗(S

a ⊗ E)⊗π∗(E) π∗(E ⊗W )

sending x : Sb → Sa ⊗E ⊗W to ẽ⊗ x̃, where ẽ ∈ πa(S
a ⊗E) is the map Sa ⊗ e : Sa → Sa ⊗E,

and x̃ ∈ πb−a(E ⊗W ) is the map

x̃ : Sb−a
ϕ−a,b−−−→ S−a ⊗ Sb

S−a⊗x−−−−−→ S−a ⊗ Sa ⊗ E ⊗W
ϕ−1
−a,a⊗E⊗W

−−−−−−−−−→ E ⊗W.

Then checking that Ψ is a left and right inverse to ΦSa,W is entirely analagous, so that Sa belongs
to E as desired.

To see E is closed under two-of-three for distinguished triangles, let

X
f−→ Y

g−→ Z
h−→ ΣX

be a distinguished triangle in SH. Then an analagous argument as above (using Proposition A.9
and Proposition A.11) yields a long exact sequence of A-graded abelian groups

π∗(ΩY ⊗ E) π∗(ΩZ ⊗ E)

π∗(X ⊗ E) π∗(Y ⊗ E) π∗(Z ⊗ E)

π∗(ΣX ⊗ E) π∗(ΣY ⊗ E)

π∗(Ωg⊗E)

π∗(h̃⊗E)

π∗(f⊗E)

π∗(g⊗E)

π∗(h⊗E)

π∗(Σf⊗E)

Then since π∗(E ⊗W ) is a flat left π∗(E)-module, we can tensor the above long exact sequence
with π∗(E ⊗W ) on the right to obtain a long exact sequence which fits in the left column of the
following commuting diagram:

RE∗ (ΩY ) π∗(ΩY ⊗ E ⊗W )

RE∗ (ΩZ) π∗(ΩZ ⊗ E ⊗W )

RE∗ (X) π∗(X ⊗ E ⊗W )

RE∗ (Y ) π∗(Y ⊗ E ⊗W )

RE∗ (Z) π∗(Z ⊗ E ⊗W )

RE∗ (ΣX) π∗(ΣX ⊗ E ⊗W )

RE∗ (ΣY ) π∗(ΣY ⊗ E ⊗W )

RE
∗ (Ωg)

RE
∗ (h̃)

RE
∗ (f)

RE
∗ (g)

RE
∗ (h)

RE
∗ (Σf)

ΦΩY,W

π∗(Ωg⊗E⊗W )

π∗(h̃⊗E⊗W )

π∗(f⊗E⊗W )

π∗(g⊗E⊗W )

π∗(h⊗E⊗W )

π∗(Σf⊗E⊗W )

ΦΩZ,W

ΦX,W

ΦY,W

ΦZ,W

ΦΣX,W

ΦΣY,W

where RE∗ denotes the functor from SH to A-graded abelian groups sendingX 7→ π∗(X⊗E)⊗π∗(E)

π∗(E ⊗W ), so that Φ−,W is a natural homomorphism RE∗ (−) ⇒ π∗(− ⊗ E ⊗W ). Then finally
by Lemma 5.5 and the five lemma, if any two of three of the middle three horizontal arrows are
isomorphisms, then all three of the horizontal arrows are isomorphisms, as desired.
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Finally, in order to show E is closed under arbitrary coproducts, suppose we have a collection
of objects {Zi}i∈I in E indexed by some (small) set E. Then we’d like to show Z :=

⊕
i∈I Zi also

belongs to E. First note that since the Sa’s are compact, for any object Y we have isomorphisms

qZi,Y :
⊕
i

Zi∗(Y ) =
⊕
i

[S∗, Zi ⊗ Y ] → [S∗,
⊕
i

(Zi ⊗ Y )] = [S∗, Z ⊗ Y ] = Z∗(Y ).

It is straightforward to verify that qZi,E :
⊕

i Zi∗(E) → Z∗(E) is not only an isomorphism of
abelian groups, but an isomorphism of right A-graded π∗(E)-modules, so that the top arrow in
the following diagram is well-defined:

⊕
i

(
Zi∗(E)⊗π∗(E) E∗(W )

) ⊕
i (Zi∗(E))⊗π∗(E) E∗(W ) Z∗(E)⊗π∗(E) E∗(W )

⊕
i Zi∗(E ⊗W ) Z∗(E ⊗W )

qZi,E
⊗E∗(Wi)

ΦZ,W

⊕
i ΦZi,W

qZi,E⊗W

Then a simple diagram chase yields the diagram commutes, so that ΦZ,W is an isomorphism,
assuming all the ΦZi,W ’s are. □

5.2. Modules over monoid objects in SH. Now, before we prove our next theorem (an analog
of the universal coefficient theorem in SH), we need to develop some of the theory of (left)
module objects over monoid objects in SH. For a review of the basic definitions and properties of
module objects over monoid objects in symmetric monoidal categories, see Appendix C.2. Recall
specifically that given a monoid object (E,µ, e) in SH, the category E-Mod of (left) E-module
objects is additive (Proposition C.15), and the forgetful functor E-Mod → SH preserves arbitrary
coproducts and has a right adjoint SH → E-Mod taking an object X in SH to the free E-module
E ⊗X (Proposition C.12).

Proposition 5.7. Let (E,µ, e) be a monoid object in SH. Then the assignment π∗ : (N,κ) 7→
π∗(N) yields an additive functor from E-Mod to the category π∗(E)-ModA of A-graded left
π∗(E)-modules and degree-preserving homomorphisms between them, and in fact, it preserves
arbitrary coproducts. In particular, if (N,κ) is an E-module object in SH, then we view it with
its canonical A-graded left π∗(E)-module structure given by the graded map

π∗(E)× π∗(N) → π∗(N)

sending a class r : Sa → E and x : Sb → N to the composition

r · x : Sa+b
ϕa,b−−→ Sa ⊗ Sb

r⊗x−−→ E ⊗N
κ−→ N.

Proof. First let (N,κ) be an E-module object. Let a, b, c ∈ A and x, x′ : Sa → N , y : Sb → E,
and z, z′ ∈ Sc → E. Then by Lemma B.9, it suffices to show that

(1) y · (x+ x′) = y · x+ y · x′,
(2) (z + z′) · x = z · x+ z′ · x,
(3) (zy) · x = z · (y · x),
(4) e · x = x.
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The first two axioms follow by Lemma 4.2. To see (3), consider the diagram:

E ⊗N

Sa+b+c Sc ⊗ Sb ⊗ Sa E ⊗ E ⊗N N

E ⊗N

∼= z⊗y⊗x

E⊗κ
κ

µ⊗N
κ

It commutes by coherence for κ. By functoriality of − ⊗ −, the two outside compositions equal
z · (y · x) on the top and (z · y) · x on the bottom. Hence, they are equal, as desired.

Next, to see (4), consider the following diagram:

Sa N

N

E ⊗N

e⊗N

x

κ

x

e⊗x

The top triangle commutes by definition. The left triangle commutes by functoriality of −⊗ −.
The right triangle commutes by unitality of κ. The top composition is x while the bottom is e ·x,
thus they are necessarily equal since the diagram commutes.

Now, we’d like to show that if f : (N,κ) → (N ′, κ) is a homomorphism of E-module objects,
then π∗(f) : π∗(N) → π∗(N

′) is a homomorphism of left π∗(E)-modules. To see this, let r :
Sa → E in πa(E) and x, x : Sb → N in πb(N). We’d like to show that π∗(f)(x + x′) =
π∗(f)(x) + π∗(f)(x

′) and π∗(f)(r · x) = r · π∗(f)(x). To see the former, consider the following
diagram:

N ′ ⊕N ′

Sa Sa ⊕ Sa N ⊕N N ′

N

∆ x⊕x′

f⊕f
∇

∇
f

It commutes by naturality of ∇ in an additive category. The top composition is π∗(f)(x) +
π∗(f)(x

′), while the bottom is π∗(f)(x+x
′), so they are equal as desired. To see that π∗(f)(r·x) =

r · π∗(f)(x), consider the following diagram:

E ⊗N ′

Sa+b Sb ⊗ Sa E ⊗N N ′

N

ϕb,a r⊗x

E⊗f
κ′

κ
f

It commutes by the fact that f is a homomorphism of E-module objects. The bottom composition
is π∗(f)(r · x), while the top composition is r · π∗(f)(x), so they are equal, as desired.

Next we claim this preserves arbitrary coproducts. First of all, note that π∗(0) = [S∗, 0] = 0 by
definition, since 0 is terminal. Now suppose we have a family of objects (Ni, κi) ∈ E-Mod then we
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would like to show that there is an degree-preserving isomorphism of A-graded left π∗(E)-modules⊕
i π∗(Ni)

∼=−→ π∗(
⊕

iNi) such that the following diagram commutes for all i:

(6)

π∗(Ni)

⊕
i π∗(Ni) π∗(

⊕
iNi)

π∗(ιNi
)

∼=

ιπ∗(Ni)

First of all, since each Sa is compact, for all a ∈ A we have isomorphisms⊕
i

πa(Ni) =
⊕
i

[Sa, Ni]
∼=−→ [Sa,

⊕
i

Ni] = πa(
⊕
i

Ni),

and these combine together to yield A-graded isomorphisms q{Ni} :
⊕

i π∗(Ni)
∼=−→ π∗(

⊕
iNi).

Explicitly unravelling defintions, the above maps send a generator x : Sa → Ni in πa(Ni) to

the class Sa
x−→ Ni

ιNi−−→
⊕

iNi. To see this isomorphism is further an isomorphism of left
π∗(E)-modules, it suffices to show that given a generator r : Sa → E in π∗(E) and a generator
x : Sb → Ni in πb(Ni) ≤

⊕
i π∗(Ni), that r · q{Ni}(x) = q{Ni}(r · x). To that end, consider the

following diagram:

Sa+b Sa ⊗ Sb E ⊗Ni E ⊗
⊕

iNi

⊕
i(E ⊗Ni)

Ni
⊕

iNi

ϕa,b r⊗x E⊗ιNi

κi

ιNi

∼=

⊕
i κi

Unravelling definitions, the top composition is r · q{Ni}(x), while the bottom composition is
q{Ni}(r · x). In Proposition C.14, we showed that ιNi : Ni ↪→

⊕
iNi is an E-module object

homomorphism, and the right map is precisely the action map for
⊕

iNi as an E-module object,
so the diagram does indeed commute — q{Ni} is a degree-preserving isomorphism of A-graded
left π∗(E)-module objects, as desired. Finally, to see diagram (6) commutes, observe that by
unravelling definitions, given a homogeneous element x : Sa → Ni in π∗(Ni), chasing it either
way around the diagram yields the composition

Sa
x−→ Ni

ιNi−−→
⊕
i

Ni,

so that diagram (6) commutes for generators, and thus commutes entirely, since all the maps
involved are homomorphisms. □

Remark 5.8. In the above proposition, we have shown that given an E-module object (N,κ)
in SH, π∗(N) is canonically an A-graded left π∗(E)-module. In particular, we may apply this
proposition to the free E-module E ⊗ X (Proposition C.12). It is straightforward to see, and
we leave it to the reader to check, that the A-graded left π∗(E)-module structure on E∗(X) =
π∗(E ⊗ X) induced by the above proposition is precisely the canonical module structure from
Proposition 4.3. In fact, the above proposition entirely subsumes the first half of Proposition 4.3
(although we give the two separate statements for the sake of clarity). Thus, there continues to
be no ambiguity when talking about the left π∗(E)-module structure on E∗(X).

Lemma 5.9. Let (E,µ, e) be a monoid object in SH, and suppose (N,κ) is a module object over
E (Definition C.8). Then for all a ∈ A, the ath suspension ΣaN of N is canonically an E-module
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object, with action map given by

κa : E ⊗ ΣaN = E ⊗ Sa ⊗N
τ⊗N−−−→ Sa ⊗ E ⊗N

Sa⊗κ−−−−→ Sa ⊗N = ΣaN.

Furthermore, given an E-module homomorphism f : (N,κ) → (N ′, κ′), Σaf : ΣaN → ΣaN ′ is
likewise an E-module homomorphism.

Proof. In this proof, we are assuming that unitality and associativity hold up to strict equality,
by the coherence theorem for monoidal categories. In order to show (ΣaN,κa) is a module object
over E, we need to show κa makes the two coherence diagrams in Definition C.8 commute. First,
to see the first diagram commutes, consider the following diagram:

Sa ⊗N E ⊗ Sa ⊗N

Sa ⊗ E ⊗N

Sa ⊗N

e⊗Sa⊗N

τ⊗N

Sa⊗κ

Sa⊗e⊗N

The top inner triangle commutes by coherence for a symmetric monoidal category, and the bottom
inner triangle commutes by the coherence condition for κ. To see the other module condition for
κ̃, consider the following diagram:

E ⊗ E ⊗ Sa ⊗N E ⊗ Sa ⊗N

E ⊗ Sa ⊗ E ⊗N Sa ⊗ E ⊗ E ⊗N Sa ⊗ E ⊗N

E ⊗ Sa ⊗N Sa ⊗ E ⊗N Sa ⊗N

µ⊗Sa⊗N

τ⊗N

Sa⊗κ

E⊗τ⊗N

E⊗Sa⊗κ
τ⊗N Sa⊗κ

τE⊗E,Sa⊗N

Sa⊗µ⊗N

Sa⊗E⊗κ
τ⊗E⊗N

The top left triangle commutes by coherence for a symmetric monoidal category. The bottom left
rectangle and top right trapezoid commute by naturality of τ . Finally, the bottom right square
commutes by the coherence condition for κ.

Thus, we have shown that ΣaN is indeed an object in E-Mod, as desired. Now let f :
(N,κ) → (N ′, κ′) be a morphism in E-Mod, we would like to show Σaf : ΣaN → ΣaN ′ is also a
homomorphism of E-modules. To that end, consider the following diagram:

E ⊗ Sa ⊗N E ⊗ Sa ⊗N ′

Sa ⊗ E ⊗N Sa ⊗ E ⊗N ′

Sa ⊗N Sa ⊗N ′

E⊗Sa⊗f

τ⊗N
Sa⊗E⊗f

τ⊗N ′

Sa⊗κ Sa⊗κ′

Sa⊗f

The top rectangle commutes by functoriality of −⊗−, while the bottom commutes since f is an
E-module homomorphism. Thus, Sa ⊗ f = Σaf is an E-module homomorphism, as desired. □

Definition 5.10. We can extend the hom-groups in E-Mod (which is additive by Proposi-
tion C.15) to A-graded abelian groups Hom∗

E-Mod(N,N
′) defined by

Homa
E-Mod(N,N

′) := HomE(Σ
aN,N ′),

where ΣaN is considered as an E-module object by the above lemma.
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Lemma 5.11. Given a monoid object (E,µ, e) in SH, an object X in SH, and some a ∈ A, the
suspension of the free module Σa(E ⊗ X) is naturally isomorphic as an E-module object to the
free E-module E ⊗ ΣaX.

Proof. It suffices to show the map Sa⊗E⊗X τ⊗X−−−→ E⊗Sa⊗X is a homomorphism of E-module
objects, as we know it is an isomorphism and natural in X. To that end, consider the following
diagram:

E ⊗ Sa ⊗ E ⊗X E ⊗ E ⊗ Sa ⊗X

Sa ⊗ E ⊗ E ⊗X

Sa ⊗ E ⊗X E ⊗ Sa ⊗X

τ⊗E⊗X

Sa⊗µ⊗X
τ⊗X

E⊗τ⊗X

µ⊗Sa⊗X
τSa,E⊗E⊗X

The top triangle commutes by coherence for a symmetric monoidal category. The bottom trape-
zoid commutes by naturality of τ . □

Lemma 5.12. Let (E,µ, e) be a monoid object in SH, and suppose we have a collection of objects
(Ni, κi) in E-Mod. Then for all a ∈ A, since Σa has a right adjoint Σ−a (Proposition 2.7), it
preserves coproducts in SH, (which are coproducts in E-Mod by Proposition C.14), so we have
an isomorphism

Σa
⊕
i

Ni ∼=
⊕
i

ΣaNi.

Then this isomorphism is an E-module homomorphism.

Proof. Consider the following diagram:

E ⊗ Sa ⊗
⊕

iNi E ⊗
⊕

i(S
a ⊗Ni)

Sa ⊗ E ⊗
⊕

iNi
⊕

i(E ⊗ Sa ⊗Ni)

Sa ⊗
⊕

i(E ⊗Ni)
⊕

i(S
a ⊗ E ⊗Ni)

Sa ⊗
⊕

iNi
⊕

i(S
a ⊗Ni)

E⊗∼=

τ⊗
⊕

iNi

Sa⊗∼=

Sa⊗
⊕

i κi

∼=

⊕
i(τ⊗Ni)

⊕
i(S

a⊗κi)

∼=

∼=

∼=

The top region comutes by additivity of E ⊗ −. The bottom two region commute by naturality
of the additivity isomorphisms for −⊗−. □

5.3. A universal coefficient theorem. Finally, we have the ingredients required to state and
prove the following universal coefficient theorem:

Theorem 5.13. Let (E,µ, e) be a monoid object and let X and Y be objects in SH. Then if
E and X are cellular and E∗(X) is a graded projective (Definition B.15) left π∗(E)-module (via
Proposition 4.3), then the map

[X,E ⊗ Y ] → Homπ∗(E)(E∗(X), E∗(Y )), [X
f−→ E ⊗ Y ] 7→ [π∗(µ⊗ Y ) ◦ E∗(f)]

is an isomorphism, and extends to an A-graded isomorphism

[X,E ⊗ Y ]∗ → Hom∗
π∗(E)(E∗(X), E∗(Y )).
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Proof. Since: (1) E ⊗X is a free E-module object (Proposition C.12), (2) E∗(X) = π∗(E ⊗X)
is a graded projective left π∗(E)-module, and (3) E and E ⊗X are cellular (by Lemma 3.4), by
Proposition 5.14 below it follows that E ⊗ X is a retract of

⊕
i(E ⊗ Sai) in E-Mod for some

collection of ai ∈ A indexed by some set I. Thus the desired result follows by Proposition 5.16
below with N = E ⊗ Y (which is considered as a free E-module by Proposition C.12). □

In the case that Y = S, this theorem becomes the more familiar statement:

E∗(X) ∼= [X,E]−∗ ∼= [X,E ⊗ S]−∗ ∼= Hom−∗
π∗(E)(E∗(X), π∗(E)),

i.e., the E-cohomology of X is isomorphic to the dual of the E-homology of X when E∗(X) is a
graded projective module. Hence why we call it the universal coefficient theorem. The condition
that E∗(X) be graded projective is a rather technical one, although thankfully it is often satisfied
in practice. In the case π∗(E) is a field, or more generally a product of fields, every π∗(E)-module
is projective and this is trivially satisified. Alternatively, if the objects N := E ⊗X and E are
cellular, then it is satisfied precisely when N is a retract of a direct sum of suspensions of copies
of E via E-module homomorphisms:

Proposition 5.14. Let (E,µ, e) be a monoid object and (N,κ) an E-module object in SH. If
there exists a collection of ai ∈ A such that N is a retract of

⊕
i(E ⊗ Sai) in E-Mod,3 then

π∗(N) is a graded projective (Definition B.15) π∗(E)-module. If E and N are cellular, then the
converse holds as well.

Proof. First suppose that there exists some collection of ai ∈ A such that N is a retract of
M :=

⊕
i(E ⊗ Sai) in E-Mod:

N M N

Then applying π∗(−) to the above diagram yields the following diagram of A-graded left π∗(E)-
modules:

π∗(N) π∗(M) π∗(N)

Note we have an isomorphism of A-graded left π∗(E)-modules π∗(M)
∼=−→
⊕

i π∗−ai(E) given by
the composition

π∗(
⊕
i

(E ⊗ Sai))
∼=−→
⊕
i

E∗(S
ai) =

⊕
i

E∗(Σ
aiS)

⊕
i t

ai
S−−−−→
⊕
i

E∗−ai(S) =
⊕
i

π∗−ai(E),

where the first isomorphism is because π∗ : E-Mod → π∗(E)-ModA preserves arbitrary co-

products (by Proposition 5.7), the maps taiS : E∗(Σ
aiS)

∼=−→ E∗−ai(S) are the degree-preserving
isomorphisms of A-graded left π∗(E)-modules from Lemma 6.10, and the equalities follow from the
coherence theorem for monoidal categories, which tells us we may assume S⊗− = −⊗S = IdSH.
Hence π∗(N) is isomorphic in π∗(E)-ModA to a free π∗(E) module, so that π∗(N) is a retract in

π∗(E)-ModA of a free π∗(E)-module, meaning it is graded projective, as desired.
On the other hand, suppose that E and N are cellular and π∗(N) is graded projective, and

pick some homogeneous generating set {xi} ⊆ π∗(N). Let M :=
⊕

i(E ⊗ S|xi|). We have a map

r :M → N

induced by the maps

ri : E ⊗ S|xi| E⊗xi−−−→ E ⊗N
κ−→ N.

3Here
⊕

i(E ⊗ Sai ) is a coproduct (Proposition C.14) of a bunch of free E-module objects (Proposition C.12),

so it is itself an E-module object.
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This is a homomorphism of E-module objects:

E ⊗
⊕

i(E ⊗ S|xi|) E ⊗N

E ⊗
⊕

iN

⊕
i(E ⊗ E ⊗ S|xi|)

⊕
i(E ⊗N)

⊕
iN

⊕
i(E ⊗ S|xi|) N

E⊗r

κ

∼=

⊕
i(µ⊗S

|xi|)

r

⊕
i(E⊗ri)

⊕
i κ

∇
⊕

i ri

E⊗
⊕

i ri

∼=

E⊗∇

∇

The right trapezoid commutes by naturality of ∇. The bottom triangle commutes by the fact
that ∇ ◦

⊕
i ri and r satisfy the same universal property for the coproduct. Every other region

commutes by additivity of E ⊗−, except the left trapezoid: Note that by expanding out how ri
is defined, it becomes⊕

i(E ⊗ E ⊗ S|xi|)
⊕

i(E ⊗ E ⊗N)
⊕

i(E ⊗ E ⊗X)

⊕
i(E ⊗ S|xi|)

⊕
i(E ⊗N)

⊕
i(E ⊗X)

⊕
i(E⊗E⊗xi)

⊕
i(E⊗κ)

⊕
i κ

⊕
i(µ⊗S

|xi|)

⊕
i(E⊗xi)

⊕
i κ

⊕
i(µ⊗X)

The left square commutes by functoriality of −⊗−, and the right square commutes by coherence
for κ. Hence, we’ve shown that r is a homomorphism of E-modules, as desired. Thus, r induces
a homomorphism of left π∗(E)-modules π∗(r) ∈ Homπ∗(E)(π∗(M), π∗(N)). Further note that for
all i ∈ I, xi is in the image of π∗(r), as by definition π∗(r) sends the class

S|xi| e⊗S|xi|

−−−−−→ E ⊗ S|xi| ↪→M

in π|xi|(M) to the composition

S|xi| e⊗S|xi|

−−−−−→ E ⊗ S|xi| E⊗xi−−−→ E ⊗N
κ−→ N,

and by unitality of κ this composition is simply xi : S
|xi| → N . Thus, we have constructed a

surjective A-graded homomorphism π∗(r) : π∗(M) → π∗(N) of left π∗(E)-modules, so that since
π∗(N) is projective graded module there exists an A-graded left π∗(E)-module homomorphism
ι : π∗(N) → π∗(M) which makes the following diagram commute:

π∗(M)

π∗(N) π∗(N)

π∗(r)
ι

Thus we have an idempotent of left A-graded π∗(E)-modules:

π∗(M) π∗(N) π∗(M)
π∗(r) ι

Now, by Proposition 5.15, since M =
⊕

i(E ⊗ S|xi|), we have that the map

π∗ : HomE-Mod(M,M) → Homπ∗(E)-Mod(π∗(M), π∗(M))
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is an isomorphism of abelian groups, so that the above idempotent is induced by some endomor-
phism ℓ :M →M of E-module objects. Further note that by functoriality of π∗,

π∗(ℓ ◦ ℓ) = π∗(ℓ) ◦ π∗(ℓ) = π∗(ℓ),

and again since π∗ is an isomorphism here, we have that ℓ ◦ ℓ = ℓ, so that ℓ is an idempotent in
SH. By Lemma 3.7, every idempotent in SH splits, meaning ℓ factors in SH as

ℓ :M
r′−→ X

ι′−→M

with r′ ◦ ι′ = idX . Since X is a retract of an E-module object, and the corresponding idempotent
is an E-module homomorphism, it follows purely formally that X may be canonically viewed as
an E-module object, and that r′ : M → X and ι′ : X → M are homomorphisms of E-module
objects (see Lemma C.13 for details). Note that since E and each S|xi| are cellular, E ⊗ S|xi| is
cellular for all i ∈ I (by Lemma 3.4), so that M =

⊕
i(E ⊗ S|xi|) is cellular, as by definition an

arbitrary coproduct of cellular objects is cellular. Thus since X is a retract of a cellular object
in a triangulated category with arbitrary coproducts, it follows that X is cellular as well (see
Lemma 3.7 for details). Now consider the following commutative diagram

π∗(N) π∗(N)

π∗(N) π∗(M) π∗(M) π∗(M) π∗(X)

π∗(X) π∗(X)
π∗(ι

′)

π∗(r)

π∗(r
′) π∗(ι

′)

ι

π∗(r
′)

ι

π∗(r
′)

π∗(r) ι

π∗(ℓ) π∗(ℓ)

From this diagram we read off that the middle diagonal composition

π∗(X)
π∗(ι

′)−−−−→ π∗(M)
π∗(r)−−−→ π∗(N)

is an isomorphism with inverse π∗(r
′) ◦ ι. Now, since X and N are cellular, and π∗(r ◦ ι′) is an

isomorphism, by Lemma 3.2 we have that r ◦ ι′ is an isomorphism, say with inverse p. Thus we
have a commuting diagram

N M N

X

rι′◦p

p ι′

and the middle row exhibits N as a retract of M =
⊕

i(E⊗S|xi|), as desired. It remains to show
this is a retract in E-Mod, i.e., that r and ι′ ◦p are homomorphisms of E-module objects. Above
we constructed r to be a homomorphism of E-modules. We also know that X is an E-module
object and that ι′ is an E-module homomorphism. Thus, it remains to show that p : N → X is
an E-module homomorphism. But we know that p is the inverse of r ◦ ι′ in SH, and we know r
and ι′ are morphisms in E-Mod, so that p is the inverse of r ◦ ι′ in E-Mod, meaning p is indeed
an E-module homomorphism as desired. □

It turns out that the condition that N is a retract of a direct sum of suspensions of E is really
the key condition which allows the universal coefficient theorem to go through, as the following
two propositions illustrate.

Proposition 5.15. Let (E,µ, e) be a monoid object and (N,κ) an E-module object in SH. Then
given a collection of ai ∈ A indexed by some set I, if (N,κ) is a retract of

⊕
i(E ⊗ Sai) in
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E-Mod,4 then for all E-module objects (N ′, κ′), the functor π∗ : E-Mod → π∗(E)-Mod(A)
(Proposition 5.7) induces an isomorphism of abelian groups

π∗ : HomE-Mod(N,N
′) → Homπ∗(E)(π∗(N), π∗(N

′)).

Proof. To start, we consider the case N =
⊕

i(E ⊗ Sai). Consider the following diagram:

HomE(
⊕

i(E ⊗ Sai), N ′) Homπ∗(E)(π∗(
⊕

i(E ⊗ Sai)), π∗(N
′))

∏
iHomE(E ⊗ Sai , N ′) Homπ∗(E)(

⊕
i π∗(E ⊗ Sai), π∗(N

′))

∏
i[S

ai , N ′]
∏
iHomπ∗(E)(π∗(E ⊗ Sai), π∗(N

′))

∏
iHomπ∗(E)(π∗−ai(E), π∗(N

′))

∏
i πai(N

′)
∏
iHomai

π∗(E)(π∗(E), π∗(N
′))

π∗

∼=

∼=

∼=

∼=

∼=

∏
i ev1

Here the top left vertical isomorphism exibits the universal property of the coproduct in E-Mod,
and middle left vertical isomorphism below that is the free-forgetful adjunction for E-modules
(Proposition C.12). The bottom horizontal isomorphism is the product of the evaluation-at-1
isomorphisms (Lemma B.10). On the other side, the top right vertical isomorphism is given by

the fact that π∗ : E-Mod → π∗(E)-ModA preserves arbitrary coproducts (by Proposition 5.7).
The middle right vertical isomorphism exhibits the universal property of the coproduct of modules.
Finally the bottom right vertical isomorphism is given by the composition

π∗(E ⊗ Sai) = E∗(S
ai) = E∗(Σ

aiS)
t
ai
S−−→ E∗−ai(S) = π∗−ai(E),

where taiX is the A-graded isomorphism of left π∗(E)-modules from Lemma 6.10, and the second
and last equalities follow by the coherence theorem for monoidal categories, which tells us we may
assume S⊗− and −⊗S are the identity on SH. Now, we claim this diagram commutes. This really
simply amounts to unravelling definitions, and chasing a homomorphism f :

⊕
i(E ⊗ Sai) → N ′

of E-module objects both ways around the diagram yields the composition∏
i

(Sai
e⊗Sai

−−−−→ E ⊗ Sai ↪→
⊕
i

(E ⊗ Sai)
f−→ N ′).

Thus, since the diagram commutes, we have that

π∗ : HomE(
⊕
i

(E ⊗ Sai), N ′) → Homπ∗(E)(π∗(
⊕
i

(E ⊗ Sai)), π∗(N
′))

is an isomorphism, as desired.
Now, consider the case that N is a retract of

⊕
i(E ⊗ Sai) in E-Mod, so there exists a

commuting diagram of E-module object homomorphisms:

N
⊕

i(E ⊗ Sai) Nι r

4Here
⊕

i(E ⊗ Sai ) is a coproduct (Proposition C.14) of a bunch of free E-module objects (Proposition C.12),

so it is itself an E-module object.
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Now consider the following diagram:

HomE(N,N
′) HomE(

⊕
i(E ⊗ Sai), N ′) HomE(N,N

′)

Homπ∗(E)(π∗(N), π∗(N
′)) Homπ∗(E)(π∗(

⊕
i(E ⊗ Sai)), π∗(N

′)) Homπ∗(E)(π∗(N), π∗(N
′))

r∗ ι∗

π∗π∗

(π∗(r))
∗ (π∗(ι))

∗

π∗

Each square commutes by functoriality of π∗. We have shown the middle vertical arrow is an
isomorphism. Thus the outside arrows are isomorphisms as well, as a retract of an isomorphism
is an isomorphism. □

Proposition 5.16. Let (E,µ, e) be a monoid object and X an object in SH. If there is a collection
of ai ∈ A indexed by some set I such that E ⊗X is a retract of

⊕
i(E ⊗ Sai) in E-Mod,5 then

for all E-module objects (N,κ), the assignment

[X,N ] → Homπ∗(E)(E∗(X), π∗(N)), [X
f−→ N ] 7→ [π∗(κ) ◦ E∗(f)]

is an isomorphism, and further extends to an A-graded isomorphism of A-graded abelian groups

[X,N ]∗ → Hom∗
π∗(E)(E∗(X), π∗(N)).

Proof. For each a ∈ A, define

Ua : [X,N ]a → Homa
π∗(E)(E∗(X), π∗(N))

to be the composition

[X,N ]a [ΣaX,N ]

HomE-Mod(E ⊗ ΣaX,N)

Homπ∗(E)(E∗(Σ
aX), π∗(N)

Homπ∗(E)(E∗−a(X), π∗(N)) Homa
π∗(E)(E∗(X), π∗(N))

adj

π∗(−)

((taX)−1)
∗

where the first isomorphism is the free-forgetful adjunction for E-modules (Proposition C.12), the
second map is that induced by the functor π∗ constructed in Proposition 5.7, and the third map
is induced by the A-graded isomorphism of left π∗(E)-modules (taX)−1 : E∗−a(X) → E∗(Σ

aX)
from Lemma 4.4. By unravelling definitions, is straightforward to see that under the identifi-
cation [X,N ] ∼= [X,N ]0, the map U0 : [X,N ]0 → Hom0

π∗(E)(E∗(X), π∗(N)) coincides with the
assignment

[X,N ] → Homπ∗(E)(E∗(X), π∗(N)) [X
f−→ N ] 7→ [π∗(κ) ◦ π∗(E ⊗ f)].

Furthermore, note we have isomorphisms in E-Mod

E ⊗ ΣaX = E ⊗ Sa ⊗X ∼= Sa ⊗ E ⊗X

5Here
⊕

i(E ⊗ Sai ) is a coproduct (Proposition C.14) of a bunch of free E-module objects (Proposition C.12),

so it is itself a E-module object.
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(by Lemma 5.11) and

Sa ⊗
⊕
i

(E ⊗ Sai) ∼=
⊕
i

(Sa ⊗ E ⊗ Sai) ∼=
⊕
i

(E ⊗ Sa ⊗ Sai) ∼=
⊕
i

(E ⊗ Sa+ai),

where the first isomorphism is in E-Mod by Lemma 5.12, the second is in E-Mod by Lemma 5.11,
and the last is a coproduct of homomorphisms of free E-modules (Proposition C.12), so it is also
an E-module homomorphism. Hence we have that E ⊗ ΣaX ∼= Sa ⊗ E ⊗ X is a retract of⊕

i(E⊗Sa+ai) ∼= Sa⊗
⊕

i(E⊗Sai) in E-Mod, as E⊗X is a retract of
⊕

i(E⊗Sai) in E-Mod,
so that by Proposition 5.15, the map

π∗ : HomE-Mod(E ⊗ ΣaX,N) → Homπ∗(E)(E∗(Σ
aX), π∗(N))

is an isomorphism. Thus, we have constructed a bunch of isomorphisms

Ua : [X,N ]a → Homa
π∗(E)(E∗(X), π∗(N)),

so that by the universal property of the coproduct of abelian groups, there is a unique A-graded
isomorphism

[X,N ]∗ → Hom∗
π∗(E)(E∗(X), π∗(N))

extending these maps, as desired. □

6. The dual E-Steenrod algebra

In Section 4.1, we showed that given a monoid object (E,µ, e) in SH, that E∗(E) = π∗(E⊗E) is
both a ring (since E⊗E is a monoid object if E is), and an A-graded bimodule over the ring π∗(E).
In this subsection, we will outline some additional structure carried by the pair (E∗(E), π∗(E)).
Namely, we will show that if (E,µ, e) is a flat (Definition 6.5) commutative monoid object, then
this pair, called the dual E-Steenrod algebra, is canonically an A-graded anticommutative Hopf
algebroid over the stable homotopy ring π∗(S) (Definition E.2). To start with, we outline some
structure maps relating E∗(E) and π∗(E).

First, recall that given a monoid object (E,µ, e) in SH, π∗(E) is canonically an A-graded ring
by Proposition 4.1, and so is E∗(E) = π∗(E ⊗ E) and E∗(E ⊗ E) = π∗(E ⊗ E ⊗ E), since the
tensor product of monoid objects in a symmetric monoidal category is again a monoid object
(Lemma C.4).

Lemma 6.1. Let (E,µ, e) be a commutative monoid object in SH. Then the maps

(1) E
∼=−→ E ⊗ S

E⊗e−−−→ E ⊗ E,

(2) E
∼=−→ S ⊗ E

e⊗E−−−→ E ⊗ E,

(3) E ⊗ E
∼=−→ E ⊗ S ⊗ E

E⊗e⊗E−−−−−→ E ⊗ E ⊗ E,

(4) E ⊗ E
µ−→ E, and

(5) E ⊗ E
τE,E−−−→ E ⊗ E

are homomorphisms of monoid objects in SH (where here E⊗E and E⊗E⊗E are considered as
monoid objects in SH by Lemma C.4 and Lemma C.5, respectively), so that by Proposition 4.15,

under π∗ they induce morphisms in π∗(S)-GCAA:

(1) ηL : π∗(E) → E∗(E),
(2) ηR : π∗(E) → E∗(E),
(3) h : E∗(E) → E∗(E ⊗ E),
(4) ϵ : E∗(E) → π∗(E), and
(5) c : E∗(E) → E∗(E).

Proof. It is a general fact that the unit and multiplication maps e : S → E and µ : E⊗E → E for a
monoid are monoid homomorphisms when (E,µ, e) is a commutative monoid object (Lemma C.6),
so that the maps E⊗ e, and e⊗E from E to E⊗E are monoid homomorphisms, by Lemma C.7.



TENSOR TRIANGULATED CATEGORIES WITH SUB-PICARD GRADING 49

Similarly, E⊗ e⊗E : E⊗E → E⊗E⊗E is a monoid homomorphism. Thus, it remains to show
that τE,E : E ⊗ E → E ⊗ E is a monoid homomorphism. First, consider the following diagram:

E1 ⊗ E2 ⊗ E3 ⊗ E4 E2 ⊗ E1 ⊗ E4 ⊗ E3

E1 ⊗ E3 ⊗ E2 ⊗ E4 E2 ⊗ E4 ⊗ E1 ⊗ E3

E1,3 ⊗ E2,4 E2,4 ⊗ E1,3

τ⊗τ

E⊗τ⊗E

µ⊗µ

τ

E⊗τ⊗E

µ⊗µ

τE⊗E,E⊗E

(Here we’ve labelled the E’s to make the action of the braidings clearer). The top region commutes
by coherence for the symmetries in a symmetric monoidal category, while the bottom region
commutes by naturality of τ . Now, consider the following diagram:

S

S ⊗ S S ⊗ S

E ⊗ E E ⊗ Eτ

τ

∼= ∼=

e⊗e e⊗e

The top triangle commutes by coherence for a symmetric monoidal category, while the bottom
region commutes by naturality of τ . Thus, we have shown τE,E is a homomorphism of monoid
objects, as desired. □

Recall a that given a homomorphism of rings f : R → R′, the ring R′ canonically becomes
an R-bimodule with left action r · x := f(r)x and right action x · r := xf(r). In particular,
the ring homomorphisms ηL : π∗(E) → E∗(E) and ηR : π∗(E) → E∗(E) endow E∗(E) with
the structure of a bimodule over π∗(E). Naturally, one may ask in what sense these bimodule
structures coincide with the canonical one (from Proposition 4.3). The following lemma tells us
that the canonical π∗(E)-bimodule structure on E∗(E) is that with left action induced by ηL and
right action induced by ηR:

Lemma 6.2. Let (E,µ, e) be a commutative monoid object in SH. Then the left (resp. right)
π∗(E)-module structure induced on E∗(E) by the ring homomorphism ηL (resp. ηR) coincides
with the canonical left (resp. right) π∗(E)-module structure on E∗(E) given in Proposition 4.3.

Proof. What’s going on here is a bit subtle, so we’re going to be really explicit. In Proposition 4.3,
it was shown that E∗(E) is a left π∗(E)-module via the assignment

π∗(E)× E∗(E) → E∗(E)

which sends homogeneous elements r : Sa → E and x : Sb → E ⊗ E to the composition

Sa+b
∼=−→ Sa ⊗ Sb

r⊗x−−→ E ⊗ E ⊗ E
µ⊗E−−−→ E ⊗ E.

We’d like to show that this is the same thing as the assignment π∗(E)×E∗(E) → E∗(E) sending
(r, x) 7→ ηL(r)x, where ηL(r)x denotes the product of ηL(r) and x taken in the ring E∗(E).
Explicitly, the product structure on E∗(E) = π∗(E ⊗ E) is that induced by the fact that E ⊗ E
is a monoid object in SH (by Lemma C.4), with product

E ⊗ E ⊗ E ⊗ E
E⊗τ⊗E−−−−−→ E ⊗ E ⊗ E ⊗ E

µ⊗µ−−−→ E ⊗ E

(note the middle two factors are swapped). By linearity of module actions, in order to show the
canonical left π∗(E)-module structure on E∗(E) agrees with that induced by ηL, it suffices to
show the module actions agree on homogeneous elements. Now, suppose we have homogeneous
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elements r : Sa → E in π∗(E) and x : Sb → E⊗E in E∗(E), and consider the following diagram,
where we’ve passed to a symmetric strict monoidal category:

Sa+b

Sa ⊗ Sb

E1 ⊗ E2 ⊗ E3 E1,2 ⊗ E3

E1 ⊗ E2 ⊗ E3 E1 ⊗ E2 ⊗ E3 E1 ⊗ E2 ⊗ E3

E1 ⊗ E ⊗ E2 ⊗ E3 E1 ⊗ E2 ⊗ E ⊗ E3 E1,2 ⊗ E3

ϕa,b

r⊗x
µ⊗E

E⊗e⊗E

E⊗τ⊗E µ⊗µ

E⊗µ⊗E
E⊗µ⊗E

E⊗E⊗e⊗E
E⊗E⊗µ

µ⊗E

Here we’ve numbered the E’s to make it clear what’s going on. The bottom composition is
ηL(r)x, while the top composition is the canonical left action of r on x given in Proposition 4.3.
The leftmost triangle commutes by unitality of µ. The triangle to the right of that commutes by
commutativity of µ. The triangle to the right of that commutes by unitality of µ, as does the
next triangle. The remaining triangle on the right commutes by functoriality of −⊗−. Finally,
the top region commutes by definition. Thus, we’ve shown that the left π∗(E)-module structure
induced on E∗(E) by ηL is in fact the canonical one. On the other hand, showing that the right
π∗(E)-module structure induced on E∗(E) by ηR is the canonical one is entirely analagous, and
we leave it as an exercise for the reader. □

Recall (Proposition B.22) that the pushout of two morphisms f : B → C and g : B → D in

R-GCAA is obtained by taking the tensor product of B-modules C ⊗B D, where C has right
B-module action induced by f , and D has left B-module action induced by g, and giving it
an anticommutative product which makes C ⊗B D a ring. Thus, by the above lemma, we may
view the tensor product of bimodules E∗(E) ⊗π∗(E) E∗(E) (where E∗(E) is considered with its
canonical π∗(E)-bimodule structure from Proposition 4.3) as not just an A-graded abelian group
or a π∗(E)-bimodule, but as an A-graded anticommutative π∗(S)-algebra:

Corollary 6.3. Given a commutative monoid object (E,µ, e) in SH, the domain of the homo-
morphism

ΦE,E : E∗(E)⊗π∗(E) E∗(E) → E∗(E ⊗ E)

constructed in Proposition 5.6 is canonically an A-graded anticommutative π∗(S)-algebra, and sits

in the following pushout diagram in π∗(S)-GCAA:

π∗(E) E∗(E)

E∗(E) E∗(E)⊗π∗(E) E∗(E)

ηL

ηR

x7→x⊗1

x 7→1⊗x

Furthermore, with respect to this ring structure, ΦE,E is a homomorphism of rings:

Lemma 6.4. Let (E,µ, e) be a commutative monoid object in SH. Then the homomorphism

ΦE,E : E∗(E)⊗π∗(E) E∗(E) → E∗(E ⊗ E)

constructed in Proposition 5.2 is a homomorphism of A-graded anticommutative π∗(S)-algebras.
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Proof. Consider the maps

f : E ⊗ E
e⊗E⊗E−−−−−→ E ⊗ E ⊗ E

and

g : E ⊗ E
E⊗E⊗e−−−−−→ E ⊗ E ⊗ E.

We know that the maps

E
e⊗E−−−→ E ⊗ E and E

E⊗e−−−→ E ⊗ E

are monoid homomorphisms by Lemma 6.1, so that f and g are monoid homomorphisms by
Lemma C.7. Furthermore, by Lemma C.5, they are monoid homomorphisms between the same
monoid objects in SH (when we assume that strict associativity holds). Finally, note that we
have the following commutative diagram

E E ⊗ E

E ⊗ E E ⊗ E ⊗ E

E⊗e

e⊗E⊗Ee⊗E

E⊗E⊗e

e⊗E⊗e

where the outer arrows are monoid object homomorphisms, thus, we may apply π∗, which yields
the following commutative diagram in π∗(S)-GCAA (Proposition 4.15):

π∗(E) E∗(E)

E∗(E) E∗(E ⊗ E)

ηL

ηR π∗(f)

π∗(g)

Hence by Lemma 6.4 and the universal property of the pushout, there exists some unique mor-
phism ℓ : E∗(E)⊗π∗(E)E∗(E) → E∗(E⊗E) in π∗(S)-GCAA which makes the following diagram
commute:

π∗(E) E∗(E)

E∗(E) E∗(E)⊗π∗(E) E∗(E)

E∗(E ⊗ E)

ηL

ηR

x 7→x⊗1

x7→1⊗x

ℓ

π∗(f)

π∗(g)

Thus in order to show ΦE,E is a morphism in π∗(S)-GCAA, it suffices to show that ΦE,E and ℓ are
the same map, since we know ℓ is a homomorphism of A-graded anticommutative π∗(S)-algebras.
Since ΦE,E and ℓ are both abelian group homomorphisms, it further suffices to show they agree
on homogeneous pure tensors, which generate E∗(E) ⊗π∗(E) E∗(E) as an abelian group. Given

homogeneous elements x : Sa → E ⊗E and y : Sb → E ⊗E in E∗(E), unravelling how pushouts

in π∗(S)-GCAA are defined (Proposition B.22), ℓ sends the pure homogeneous tensor x⊗y to the
element π∗(g)(x)·π∗(f)(y), where here · denotes the product taken in E∗(E⊗E) = π∗(E⊗E⊗E).
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Now, consider the following diagram:

Sa+b

Sa ⊗ Sb

E1 ⊗ E2 ⊗ E3 ⊗ E4 E1 ⊗ E2 ⊗ Ea ⊗ Eb ⊗ E3 ⊗ E4

E1 ⊗ Eb ⊗ E2 ⊗ Ea ⊗ E3 ⊗ E4

E1 ⊗ E2 ⊗ E3 ⊗ E4 E1 ⊗ E2 ⊗ E3 ⊗ Ea ⊗ E4

E1 ⊗ E2,3 ⊗ E4 E1 ⊗ E2,3 ⊗ E4

ϕa,b

x⊗y

E⊗µ⊗E

g⊗f=E⊗E⊗e⊗e⊗E⊗E

E⊗τE⊗E,E⊗E⊗E

µ⊗E⊗τ⊗E

E⊗µ⊗µ

E⊗e⊗E⊗e⊗E⊗E

E⊗E⊗E⊗e⊗E

E⊗e⊗E⊗e⊗E⊗E

E⊗µ⊗E

Here we have labelled the E’s to make things clearer. The left outside composition is ΦE,E(x⊗y),
while the right composition is π∗(g)(x) · π∗(f)(y). The top right triangle commutes by coherence
for a symmetric monoidal category. The middle tright triangle commutes by unitality of µ and
coherence for a symmetric monoidal category. The bottom trapezoid commutes by unitality of µ.
The rest of the diagram commutes by definition. Thus we have ΦE,E(x⊗y) = π∗(g)(x) ·π∗(f)(y),
so that ΦE,E = ℓ is not just an isomorphism of left π∗(E)-modules, but an isomorphism of
A-graded anticommutative π∗(S)-algebras, as desired. □

For the sake of conciseness, we make the following definition:

Definition 6.5. We say that a monoid object (E,µ, e) in SH is flat if the canonical right π∗(E)-
module structure on E∗(E) from Proposition 4.3 is that of a flat module, or equivalently by
Lemma 6.2, if the the map ηR : π∗(E) → E∗(E) constructed in Lemma 6.1 is a flat ring homo-
morphism.

Finally, we can package all of this information into an object called the dual E-Steenrod algebra:

Definition 6.6. Let (E,µ, e) be a commutative monoid object in SH which is flat (Definition 6.5)
and cellular (Definition 3.1). Then the dual E-Steenrod algebra is the pair of A-graded abelian
groups (E∗(E), π∗(E)) equipped with the following structure:

1. The A-graded anticommutative π∗(S)-algebra structure on π∗(E) induced from E being
a commutative monoid object in SH (Proposition 4.15).

2. The A-graded anticommutative π∗(S)-algebra structure on E∗(E) induced from the fact
that E⊗E is canonically a commutative monoid object in SH (Lemma C.4), so that also
E∗(E) = π∗(E ⊗ E) is an A-graded anticommutative π∗(S)-algebra (Proposition 4.15).

3. The homomorphisms of A-graded anticommutative π∗(S)-algebras

ηL : π∗(E) → E∗(E)

and
ηR : π∗(E) → E∗(E)

induced under π∗ by the monoid object homomorphisms

E
∼=−→ E ⊗ S

E⊗e−−−→ E ⊗ E

and

E
∼=−→ S ⊗ E

e⊗E−−−→ E ⊗ E.
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4. The homomorphism of A-graded anticommutative π∗(S)-algebras

ΨE : E∗(E) → E∗(E)⊗π∗(E) E∗(E)

given by the composition

E∗(E)
h−→ E∗(E ⊗ E)

Φ−1
E,E−−−→ E∗(E)⊗π∗(E) E∗(E),

where h is a homomorphism of A-graded anticommutative π∗(S)-algebras induced under
π∗ by the monoid object homomorphism

E ⊗ E
∼=−→ E ⊗ S ⊗ E

E⊗e⊗E−−−−−→ E ⊗ E ⊗ E,

and ΦE,E is morphism constructed in Proposition 5.2, which is proven to be an isomor-
phism in Proposition 5.6 (since E is flat and cellular), and furthermore an isomorphism

in π∗(S)-GCAA by Lemma 6.4.
5. The homomorphism of A-graded anticommutative π∗(S)-algebras

ϵ : E∗(E) → π∗(E)

induced under π∗ by the monoid object homomorphism

E ⊗ E
µ−→ E.

6. The homomorphism of A-graded anticommutative π∗(S)-algebras

c : E∗(E) → E∗(E)

induced under π∗ from the monoid object homomorphism

E ⊗ E
τ−→ E ⊗ E.

The curious reader may wonder why we call (E∗(E), π∗(E)) the dual E-Steenrod algebra. The
“dual” is there because the E-Steenrod algebra refers instead to the E-self cohomology E∗(E) ∼=
[E,E]−∗. Clasically, the Adams spectral sequence was originally constructed in such a way that
the E1 and E2 pages could be characterized in terms of cohomology groups as modules over the
E-Steenrod algebra, but it turns out that our approach using homology groups as comodules over
the dual E-Steenrod algebra is somewhat better behaved in practice.

6.1. The dual E-Steenrod algebra is a Hopf algebroid. Above, given a flat and cellular
commutative monoid object (E,µ, e) in SH, we constructed an algebraic gadget (E∗(E), π∗(E))

in the category π∗(S)-GCAA of A-graded anticommutative π∗(S)-algebras called the dual E-
Steenrod algebra. In this subsection, we will show this object is an example of the general notion
of an A-graded anticommutative Hopf algebroid :

Proposition 6.7. Let (E,µ, e) be a commutative monoid object in SH which is flat (Defini-
tion 6.5) and cellular (Definition 3.1). Then the dual E-Steenrod algebra (E∗(E), π∗(E)) with the
structure maps (ηL, ηR,Ψ, ϵ, c) from Definition 6.6 is an A-graded anticommutative Hopf algebroid

over π∗(S) (Definition E.2), i.e., a co-groupoid object in the category π∗(S)-GCAA.

Proof. All that needs to be done is to show all the diagrams in Definition E.2 commute. This is
nearly all entirely straightforward, the only real difficulty that arises is showing the co-associativity
diagram holds. The argument is sketched in the case SH is the classical stable homotopy category
in sufficent detail in Lecture 3 of the article [1] by Adams. The argument given there works
essentially the exact same way here in our more general setting. □
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6.2. Comodules over the dual E-Steenrod algebra. Finally, we can identify some addi-
tional structure on E-homology groups of (cellular) objects in SH in terms of the Hopf algebroid
structure on the dual E-Steenrod algebra.

Proposition 6.8. Let (E,µ, e) be a flat (Definition 6.5) and cellular (Definition 3.1) commutative
monoid object in SH. Then E∗(−) is an additive functor from the full subcategory SH-Cell of

cellular objects in SH to the category E∗(E)-CoModA of left A-graded comodules (Definition E.6)
over the dual E-Steenrod algebra, which is an A-graded commutative Hopf algebroid over π∗(S),
by Proposition 6.7.

In particular, given an object X in SH-Cell, we are viewing E∗(X) with its canonical left
π∗(E)-module structure (Proposition 4.3), and the action map is given by the composition

ΨX : E∗(X)
E∗(e⊗X)−−−−−−→ E∗(E ⊗X)

Φ−1
E,X−−−→ E∗(E)⊗π∗(E) E∗(X).

Proof. Again, we refer the reader to Lecture 3 in [1], where this is shown in the classical stable
homotopy category (although the proof carries over basically verbatim to our setting). □

Now, we can use this structure in order to identify the group of maps X → E ⊗ Y with
graded E∗(E)-comodule homomorphisms from E∗(X) to E∗(Y ). First, we need the following two
technical lemmas:

Lemma 6.9. Let (E,µ, e) be a flat (Definition 6.5) and cellular (Definition 3.1) commutative
monoid object in SH. Then given an object X in SH, the map

ΦE,X : E∗(E)⊗π∗(E) E∗(X) → E∗(E ⊗X)

constructed in Proposition 5.2 is a homomorphism of A-graded left Γ-comodules, where here by
Proposition E.8 we are viewing E∗(E) ⊗π∗(E) E∗(X) as the co-free E∗(E)-comodule on E∗(X)
with its canonical A-graded left π∗(E)-module structure (from Proposition 4.3), and E∗(E ⊗X)
with its canonical left E∗(E)-comodule structure from Proposition 6.8.

Proof. Consider the following diagram:

E∗(E)⊗π∗(E) E∗(X) E∗(E)⊗π∗(E) (E∗(E)⊗π∗(E) E∗(X))

(E∗(E)⊗π∗(E) E∗(E))⊗π∗(E) E∗(X)

E∗(E ⊗ E)⊗π∗(E) E∗(X)

(E ⊗ E)∗(E)⊗π∗(E) E∗(X)

π∗(E ⊗ E ⊗ E ⊗X)

E∗(E ⊗ E ⊗X)

E∗(E ⊗X) E∗(E)⊗π∗(E) E∗(E ⊗X)

ΦE,X

ΨE∗(E)⊗E∗(X)

E∗(E)⊗ΦE,X

ΨE⊗X

E∗(e⊗E⊗X) ΦE,E⊗X

E∗(e⊗E)
ΦE,E⊗E∗(X)

∼=

ΦE,X

The top and bottom regions commute by definition. The left region commutes by naturality
of ΦE,X . Thus, it remains to show the rightmost region commutes. To that end, since all the
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arrows involved are homomorphisms, it suffices to chase a homogeneous pure tensor around. Let
x : Sa → E ⊗ E, y : Sb → E ⊗ E, and z : Sc → E ⊗X, and consider the following diagram:

Sa+b+c

Sa ⊗ Sb ⊗ Sc

E ⊗ E ⊗ E ⊗ E ⊗ E ⊗X E ⊗ E ⊗ E ⊗ E ⊗X

E ⊗ E ⊗ E ⊗ E ⊗X E ⊗ E ⊗ E ⊗X

ϕ

x⊗y⊗z
E⊗µ⊗E⊗E⊗X

E⊗E⊗µ⊗XE⊗E⊗E⊗µ⊗X
E⊗µ⊗E⊗X

The two compositions are the two results of chasing (x ⊗ y) ⊗ z around the rightmost region in
the above diagram. It clearly commutes by functoriality of − ⊗ −. Hence, indeed we have that
ΦE,X is a homomorphism of left E∗(E)-comodules, as desired. □

Lemma 6.10. Let (E,µ, e) be a flat (Definition 6.5) and cellular (Definition 3.1) commutative
monoid object in SH. Then the isomorphism

taX : E∗(Σ
aX) → E∗−a(X)

from Lemma 4.4 is an A-graded isomorphism of left E∗(E)-comodules.

Proof. We know that taX : E∗(Σ
aX) → E∗−a(X) is already an A-graded isomorphism of left

π∗(E)-modules, so clearly it simply suffices to show that taX is a homomorphism of left E∗(E)-
comodules. To that end, consider the following diagram:

(7)

E∗(Σ
aX) E∗(E)⊗π∗(E) E∗(Σ

aX)

E∗(E ⊗ ΣaX)

E∗(Σ
a(E ⊗X))

E∗−a(E ⊗X)

E∗−a(X) E∗(E)⊗π∗(E) E∗−a(X)

taX

ΨΣaX

E∗(e⊗ΣaX) ΦE,ΣaX

E∗−a(e⊗X) ΦE,X

ΨX

E∗(E)⊗taX

E∗(τE,Sa⊗X)

taE⊗X

The top and bottom regions commute by definition. To see the left and right regions commute,
we’ll do a diagram chase of homogeneous elements. First of all, let x : Sb → E ⊗ Sa ⊗ X in
E∗(Σ

aX), and consider the following diagram exhibiting the two ways to chase x around the
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leftmost region:

Sb−a

Sb ⊗ S−a

E ⊗ Sa ⊗X ⊗ S−a E ⊗ E ⊗ Sa ⊗X ⊗ S−a E ⊗ Sa ⊗ E ⊗X ⊗ S−a

E ⊗ E ⊗X ⊗ Sa ⊗ S−a

E ⊗X ⊗ Sa ⊗ S−a E ⊗X E ⊗ E ⊗X

ϕb,−a

x⊗S−a

E⊗e⊗Sa⊗X⊗S−a E⊗τ⊗X⊗S−a

E⊗τSa,E⊗X⊗S−a

E⊗E⊗X⊗ϕ−1
a,−a

E⊗τ⊗S−a

E⊗E⊗τ⊗S−a

E⊗e⊗X⊗Sa⊗S−a

E⊗X⊗ϕ−1
a,−a

E⊗e⊗X

The top right region commutes by coherence for the symmetries, while the other two regions
commute by functoriality of −⊗−. Thus, it remains to show the rightmost region in diagram (7)
commutes. To that end, let x : Sb → E⊗E in E∗(E) and y : Sc → E⊗Sa⊗X in E∗(Σ

aX), and
consider the following diagram, which exhibits the two ways to chase x⊗ y around the rightmost
region of diagram (7):

Sb+c−a

Sb ⊗ Sc ⊗ S−a

E ⊗ E ⊗ E ⊗ Sa ⊗X ⊗ S−a E ⊗ E ⊗ Sa ⊗X ⊗ S−a E ⊗ Sa ⊗ E ⊗X ⊗ S−a

E ⊗ E ⊗ E ⊗X ⊗ Sa ⊗ S−a E ⊗ E ⊗X ⊗ Sa ⊗ S−a

E ⊗ E ⊗ E ⊗X E ⊗ E ⊗X

ϕ

x⊗y⊗S−a

E⊗µ⊗Sa⊗X⊗S−a
E⊗τ⊗X⊗S−a

E⊗τSa,E⊗XS
−a

E⊗E⊗X⊗ϕ−1
a,−a

E⊗E⊗E⊗τ⊗S−a

E⊗E⊗E⊗X⊗ϕ−1
a,−a

E⊗µ⊗X

E⊗µ⊗X⊗Sa⊗S−a

E⊗E⊗τ⊗S−a

The top right region commutes by coherence for the symmetries. The remaining two regions
commute by functoriality of − ⊗ −. Thus, indeed we have that diagram (7) commutes, so taX is
a homomorphism of left E∗(E)-comodules, as desired. □

Now we may prove the theorem.

Theorem 6.11. Let (E,µ, e) be a commutative monoid object, and X and Y objects in SH.
Suppose further that:

• E is flat (Definition 6.5) and cellular (Definition 3.1),
• X is cellular and E∗(X) is a graded projective left π∗(E)-module (via Proposition 4.3),
and

• Y is cellular.

Then the assignment

E∗(−) : [X,E ⊗ Y ] → HomE∗(E)(E∗(X), E∗(E ⊗ Y )), f 7→ E∗(f)

induced by the functor E∗(−) : SH-Cell → E∗(E)-CoModA (Proposition 6.8) is an isomorphism
of abelian groups.
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Proof. Since X is cellular, by Proposition 6.8 we have that E∗(X) is canonically an A-graded left
E∗(E)-comodule. Similarly, since E and Y are cellular, we know that E ⊗ Y is cellular, so that
E∗(E ⊗ Y ) is also canonically an E∗(E)-comodule. Thus, we have a well-defined assignment

[X,E ⊗ Y ]
E∗(−)−−−−→ HomE∗(E)(E∗(X), E∗(E ⊗ Y )).

To see this arrow is an isomorphism, consider the following diagram:

[X,E ⊗ Y ] HomE∗(E)(E∗(X), E∗(E ⊗ Y ))

Homπ∗(E)(E∗(X), E∗(Y )) HomE∗(E)(E∗(X), E∗(E)⊗π∗(E) E∗(Y ))

E∗(−)

(ΦE,Y )∗π∗(µ⊗Y )◦E∗(−) π∗(µ⊗Y )◦(−)

adj

We know the left vertical map is an isomorphism by Theorem 5.13, and the bottom horizontal
isomorphism is the forgetful-cofree adjunction (Proposition E.8) for A-graded left comodules over
the dual E-Steenrod algebra. The right vertical arrow is a well-defined isomorphism, as ΦE,Y is a
homomorphism of A-graded left E∗(E)-comodules (Lemma 6.9), and in fact it is an isomorphism
by Proposition 5.6, since E∗(E) is flat and Y is cellular. Thus in order to see the top arrow is an
isomorphism, it suffices to show that the diagram commutes. The left triangle clearly commutes;
to see the right triangle commutes, recall that by how the how forgetful-cofree adjunction for left
comodules over a Hopf algebroid is defined, that the bottom vertical arrow sends an A-graded
homomorphism of left E∗(E)-comodules ψ : E∗(X) → E∗(E)⊗π∗(E) E∗(Y ) to the composition

E∗(X)
ψ−→ E∗(E)⊗π∗(E) E∗(Y )

π∗(µ)⊗E∗(Y )−−−−−−−−−→ π∗(E)⊗π∗(E) E∗(Y )
∼=−→ E∗(Y ).

Thus, in order to show that this composition equals π∗(µ⊗ Y ) ◦ΦE,Y ◦ ψ, it suffices to show the
following diagram commutes:

E∗(E)⊗π∗(E) E∗(Y ) π∗(E)⊗π∗(E) E∗(Y )

E∗(E ⊗ Y ) E∗(Y )

π∗(µ)⊗E∗(Y )

∼=ΦE,Y

π∗(µ⊗Y )

Since all the arrows here are homomorphisms of abelian groups, in order to show the diagram
commutes, it suffices to chase pure homogeneous tensors around. To that end, let x : Sa → E⊗E
and y : Sb → E ⊗ Y , and consider the following diagram exhibiting the two ways to chase x⊗ y
around:

Sa+b Sa ⊗ Sb E ⊗ E ⊗ E ⊗ Y E ⊗ E ⊗ Y

E ⊗ E ⊗ Y E ⊗ Y

ϕa,b x⊗y µ⊗E⊗Y

µ⊗YE⊗µ⊗Y
µ⊗Y

The diagram commutes by associtiavity of µ. Thus, we have indeed shown that

E∗(−) : [X,E ⊗ Y ] → HomE∗(E)(E∗(X), E∗(E ⊗ Y ))

is an isomorphism of abelian groups, as desired. □
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7. The Adams spectral sequence

Finally, we may construct the spectral sequence. Henceforth, we will assume the reader is
familiar with the theory of spectral sequenes arising from unrolled exact couples, along with the
notion of (conditional, strong) convergence of such spectral sequences to their (co)limits. The
primary reference for these facts will be Boardman’s paper [5] on conditionally convergent spectral
sequences. When using any results from this reference, we will be sure to provide a proper citation.
Note that Boardman works with Z-graded groups, although everything he does carries through
entirely the same with A-graded groups.

From now on, let (E,µ, e) be a monoid object and X and Y be objects in SH.

7.1. Construction of the spectral sequence.

Definition 7.1. Let E be the fiber of the unit map e : S → E (Proposition A.4). Let Y0 := Y
and W0 := E ⊗ Y . For s > 0, define

Ys := E
s ⊗ Y, Ws := E ⊗ Ys = E ⊗ E

s ⊗ Y,

where E
s
denotes the s-fold tensor product E ⊗ · · · ⊗ E. Then we get fiber sequences

Ys+1
is−→ Ys

js−→Ws
ks−→ ΣYs+1

obtained by applying −⊗ Ys to the fiber sequence

E → S
e−→ E → ΣE.

We can splice these sequences together to get the following diagram, which is called the canonical
Adams-resolution of Y :

· · · Y3 Y2 Y1 Y0 = Y

W3 W2 W1 W0

i2 i1 i0

j3 j2 j1 j0
k2 k1 k0

Here we are using dashed arrows to denote the (degree −1) maps ks :Ws → ΣYs+1. In particular,
the above diagram does not commute in any sense.

Now, by applying [X,−]∗ to the canonical E-Adams resolution of Y , we get an associated
unrolled exact couple, and thus a spectral sequence:

Definition 7.2. Consider the canonical E-Adams resolution of Y from Lemma 7.3:

· · · Y3 Y2 Y1 Y0 = Y

W3 W2 W1 W0

i2 i1 i0

j3 j2 j1 j0
k2 k1 k0

We can extend this diagram to the right by setting Ys = Y , Ws = 0, and is = idY for s < 0. Then
we may apply the functor [X,−]∗, and by Proposition 2.10, we obtain the following A-graded
unrolled exact couple:

· · · [X,Ys+2]∗ [X,Ys+1]∗ [X,Ys]∗ [X,Ys−1]∗ · · ·

[X,Ws+2]∗ [X,Ws+1]∗ [X,Ws]∗ [X,Ws−1]∗

is+1 is is−1

js+1∂s+1js+2 js−1∂s−1js∂s

where here we are being abusive and writing is : [X,Ys+1]∗ → [X,Ys]∗ and js : [X,Ys]∗ → [X,Ws]∗
to denote the pushforward maps induced by is : Ys+1 → Ys and js : Ys →Ws, respectively. Each
is, js, and ∂s are A-graded homomorphisms of degrees 0, 0, and −1, respectively.
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In [5, §0], it is described how we may associate a Z × A-graded spectral sequence r 7→
(E∗,∗

r (X,Y ), dr) to the above A-graded unrolled exact couple, where dr has Z×A-degree (r,−1).
We call this spectral sequence the E-Adams spectral sequence for the computation of [X,Y ]∗.

For those who would rather not lose themselves in Boardman’s document, we give a brief
unravelling of how it applies to the present situation. Given some s ∈ Z and some r ≥ 1, we may
define the following A-graded subgroups of [X,Ws]∗:

Zsr := ∂−1
s (im[i(r−1) : [X,Ys+r]∗ → [X,Ys+1]∗])

and
Bsr := js(ker[i

(r−1) : [X,Ys]∗ → [X,Ys−r+1]∗]),

where we adopt the convention that i(0) is simply the identity. This yields an infinite sequence of
inclusions

0 = Bs1 ⊆ Bs2 ⊆ Bs3 ⊆ · · · ⊆ im js = ker ∂s ⊆ · · · ⊆ Zs3 ⊆ Zs2 ⊆ Zs1 = [X,Ws]∗.

Then for r ≥ 1, we define Esr to be the A-graded quotient group

Esr := Zsr/B
s
r .

Thus taking the direct sum of all the Esr ’s yields the r
th page of the spectral sequence

Er :=
⊕
s∈Z

Esr ,

which is a Z×A-graded abelian group.
The differential dr : Er → Er is a map of Z × A-degree (r,1), and is constructed as follows:

an element of Esr = Zsr/B
s
r is a coset represented by some x ∈ Zsr , so that ∂s(x) = i(r−1)(y) for

some y ∈ [X,Ys+r]∗. Then we define dr([x]) to be the coset [js+r(y)] in Z
s+r
r /Bs+rr .

In the case r = 1, since Bs1 = 0 and Zs1 = [X,Ws]∗, we have that Es1 = [X,Ws]∗, and given
some x ∈ Es1 = [X,Ws]∗, the differential d1 is given by d1(x) = js+1(∂s(x)), so that d1 = j ◦ ∂.
Furthermore, since the unrolled exact couple which yields the spectral sequence vanishes on its
negative terms, we have that Es,ar (X,Y ) = 0 for s < 0. In particular, the E-Adams spectral
sequence is a half-plane spectral sequence with entering differentials, in the sense of [5, §7].

Showing in explicit detail that all of these definitions make sense and are well-defined is rela-
tively straightforward. Furthermore, one may check that that dr ◦ dr = 0, and that

ker dsr/ im dsr =
Zsr+1/B

s
r

Bsr+1/B
s
r

∼= Zsr+1/B
s
r+1 = Esr+1.

Above we constructed the spectral sequence by means of the “canonical” E-Adams resolution
of Y , but one may more generally pursue the notion of E-Adams resolutions of the object Y , for
which the canonical Adams resolution constructed above will be an example. We do not explore
this generality here (although one certainly could); these are useful when one wants to construct
an Adams resolution from an algebraic resolution of E∗(Y ), or by modifying an Adams resolution
for some other object. One may find different notions of what exactly constitutes an Adams
resolution in the literature (for example, see [26, Definition 2.2.1] or [28, Definition 11.3.1]), and
they will always be defined so that the E-Adams spectral sequence for [X,Y ]∗ is independent of
the choice of Adams resolution for Y , at least from its E2 page onwards. One important condition
(or definitional consequence) one will always find for an E-Adams resolution is that the i’s must
vanish in E-homology. We can show that the canonical E-Adams resolution we have constructed
satisfies this property:

Lemma 7.3. Let is and js be as in Definition 7.1. Then the maps js : Ys → Ws induce split
monomorphisms E∗(js) on E-homology, so that in particular the maps is : Ys+1 → Ys vanish in
E-homology, i.e., E∗(is) is the zero map.
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Proof. First, note that since

Ys+1
is−→ Ys

js−→Ws
ks−→ ΣYs+1

is a distinguished triangle and SH is tensor triangulated, there is a distinguished triangle of the
form

E ⊗ Ys+1
E⊗is−−−→ E ⊗ Ys

E⊗js−−−→ E ⊗Ws → Σ(E ⊗ Ys+1).

Thus, applying π∗(−) ∼= [S,−]∗ to the triangle yields that the following sequence is exact (see
Proposition A.2 for details):

E∗(Ys+1)
E∗(is)−−−−→ E∗(Ys)

E∗(js)−−−−→ E∗(Ws).

Now, it is straightforward to verify by construction that js is the map e⊗Ys : Ys → E⊗Ys =Ws.
Thus, by unitality of µ, we have that E ⊗ js : E ⊗ Ys → E ⊗Ws is a split monomorphism, with
right inverse µ ⊗ Ys : E ⊗Ws = E ⊗ E ⊗ Ys → E ⊗ Ys. Then since any functor preserves split
monomorphisms, it follows that E∗(js) = π∗(E⊗ js) is likewise a split monomorphism, so that in
particular E∗(js) is injective. Thus imE∗(is) = kerE∗(js) = 0, so that is is indeed the zero map,
as desired. □

7.2. The E2 page. Now, we would like to characterize the E2 page of the spectral sequence in
terms of something more concrete. Namely, we will characterize the E2 page in terms of Ext of
comodules over the dual E-Steenrod algebra. For a quick review of Ext in an abelian category
and derived functors, see Appendix D. The goal of this subsection will be to prove the following
theorem:

Theorem 7.4. Let (E,µ, e) be a commutative monoid object, and X and Y objects in SH.
Suppose further that:

• E is flat (Definition 6.5) and cellular (Definition 3.1),
• X is cellular and E∗(X) is a graded projective left π∗(E)-module (via Proposition 4.3),
• Y is cellular.

Then the non-vanishing entries of the second page of the E-Adams spectral sequence for the
computation of [X,Y ]∗ (Definition 7.2) are the Ext groups of A-graded left comodules over the
anticommutative Hopf algebroid structure on the dual E-Steenrod algebra (Proposition 6.7), i.e.,
we have the following isomorphisms for all s ≥ 0 and a ∈ A:

Es,a2 (X,Y ) ∼= Exts,a+s
E∗(E)(E∗(X), E∗(Y )) := ExtsE∗(E)(E∗(X), E∗+a+s(Y )).

Proof. By Proposition 7.8 below, for each s ≥ 0 and a ∈ A, Es,a2 (X,Y ) is isomorphic to the sth

cohomology group of the cochain complex obtained by applying F := Homa+s
E∗(E)(E∗(X),−) to

the complex

0 −−−−→ E∗(W0)
E∗(δ0)−−−−→ E∗(ΣW1)

E∗(δ1)−−−−→ E∗(Σ
2W2)

E∗(δ2)−−−−→ E∗(Σ
3W3) −−−−→ · · · .

Furthermore, by Lemma 7.7, this complex is an F -acyclic resolution of E∗(Y ) (Definition D.4).
Thus, since the category of E∗(E)-comodules is an abelian category with enough injectives (Propo-
sition E.9), we have by Proposition D.5 that

Es,a2 (X,Y ) ∼= RsHoma+s
E∗(E)(E∗(X),−)(E∗(Y )) = Exts,a+s(E∗(X), E∗(Y )),

as desired. □

As a result of this theorem, the spectral sequence is often shifted, by re-defining

Es,ar (X,Y )new := Es,a+s
r (X,Y ),

in which case the given isomorphism characterizing the E2 page is strictly degree-preserving. This
is in fact the standard convention for the classical stable homotopy category. We leave it to the
reader to unravel what the differential d2 corresponds to under this identification. The remainder
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of this subsection is devoted to proving Lemma 7.7 and Proposition 7.8. To start, we establish
the following convention:

Definition 7.5. Given some (nonnegative integer) n ≥ 0, define natural isomorphisms νnX :

ΣnX → ΣnX inductively, by setting ν0X := λX , ν1X := ν−1
X , and supposing νn−1

X has been defined
for some n > 1, define νnX to be the composition

νnX : ΣnX = Sn ⊗X
ϕn−1,1⊗X−−−−−−−→ Sn−1 ⊗ S1 ⊗X

Sn−1⊗ν−1
X−−−−−−−→ Sn−1ΣX

νn−1
ΣX−−−→ ΣnX.

By induction, naturality of ν, and functoriality of −⊗−, these isomorphisms are clearly natural
in X.

Lemma 7.6. Suppose E and Y are cellular. Then for all s ∈ Z, the objects Ys and Ws from the
canonical E-Adams resolution of Y (Definition 7.1) are cellular.

Proof. Unravelling definitions, for s < 0, Ws = 0 and Ys = Y , which are both cellular.6 For s ≥ 0,
we have Ws = E ⊗ Ys, so that by cellularity of E and Lemma 3.4, it suffices to show that Ys is
cellular for s ≥ 0. We know Y0 = Y is cellular by definition. For s > 0, Ys is the tensor product
E
s ⊗ Y , where E fits into the distinguished triangle

E → S
e−→ E → ΣE.

By the definition of cellularity, E is cellular since S and E are. Thus E
s ⊗ Y is cellular by

Lemma 3.4, as it is a tensor product of cellular objects in SH. □

Lemma 7.7. Let (E,µ, e) be a flat (Definition 6.5) and cellular (Definition 3.1) commutative
monoid object and X and Y cellular objects in SH, and for s ≥ 0 define Ys and Ws as in
Definition 7.1. In particular, for each s ≥ 0, Ws = E ⊗ Ys and we have distinguished triangles

Ys+1
is−→ Ys

js−→Ws
ks−→ ΣYs+1.

Then if E∗(X) is a graded projective (Definition B.15) left π∗(E)-module (via Proposition 4.3)
then the sequence

0 → E∗(Y )
E∗(j0)−−−−→ E∗(W0)

E∗(δ0)−−−−→ E∗(ΣW1)
E∗(δ1)−−−−→ E∗(Σ

2W2)
E∗(δ2)−−−−→ E∗(Σ

3W3) → · · ·

is an F -acyclic resolution (Definition D.4) of E∗(Y ) in E∗(E)-CoModA for

F = Homa
E∗(E)(E∗(X),−)

for all a ∈ A, where δs is the composition

ΣsWs
Σsks−−−→ Σs+1Ys+1

Σs+1js+1−−−−−−→ Σs+1Ws+1.

Proof. By Lemma 7.6, eachWs is cellular, so that furthermore ΣsWs
∼= Ss⊗Ws is cellular for each

s ≥ 0, by Lemma 3.4. Thus, the sequence does indeed live in E∗(E)-CoModA by Proposition 6.8,
as desired. Next, we claim that E∗(Σ

sWs) is an F -acyclic object for each s ≥ 0, i.e., that

Extn,aE∗(E)(E∗(X), E∗(Σ
sWs)) = ExtnE∗(E)(E∗(X), E∗+a(Σ

sWs)) = 0

60 is cellular because it is the cofiber of the identity on S by axiom TR1 for a triangulated category (Defini-
tion 2.1), i.e., there is a distinguished triangle S → S → 0 → ΣS.
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for all n > 0, s ≥ 0, and a ∈ A. Note that we have an A-graded isomorphism of left E∗(E)-
comodules:

E∗(E)⊗π∗(E) E∗+a(Σ
sYs) E∗(E)⊗π∗(E) E∗+a(Σ

sYs)

E∗(E ⊗ ΣsYs)

E∗(E ⊗ Ss ⊗ Ys)

E∗(S
s ⊗ E ⊗ Ys)

E∗(Σ
s(E ⊗ Ys)) E∗(Σ

sWs)

ΦE,ΣsYs

E∗(E⊗(νs
Ys

)−1)

E∗(τ⊗Ys)

E∗(ν
s
E⊗Ys

)

where ΦE,ΣsY is an A-graded isomorphism of abelian groups by Proposition 5.6, and further-
more an isomorphism of E∗(E)-comodules by Lemma 6.9. Every other arrow is an isomor-

phism of E∗(E)-comodules by functoriality of E∗(−) : SH-Cell → E∗(E)-CoModA. Thus, since

E∗(Σ
sWs) is isomorphic to E∗(E)⊗π∗(E)E∗+a(Σ

sYs) in E∗(E)-CoModA, and in particular since
ExtnE∗(E)(E∗(X),−) is a functor, we have

ExtnE∗(E)(E∗(X), E∗+a(Σ
sWs)) ∼= ExtnE∗(E)(E∗(X), E∗(E)⊗π∗(E) E∗+a(Σ

sYs)).

Yet, E∗(E)⊗π∗(E)E∗+a(Σ
sYs) is a co-free E∗(E)-comodule (Proposition E.8), in which case since

E∗(X) is graded projective as an object in π∗(E)-ModA, we have that

Extn,aE∗(E)(E∗(X), E∗(E)⊗π∗(E) E∗+a(Σ
sYs)) = 0,

by Proposition E.10.
Finally, it remains to show that the sequence is exact. To that end, first note that by induction

on axiom TR4 for a triangulated category and the fact that distinguished triangles are exact
(Proposition A.2), the following sequence in SH is exact (since a sequence clearly remains exact
even after changing the signs of its maps):

ΣsYs
Σsjs−−−→ ΣsWs

Σsks−−−→ Σs+1Ys+1
Σs+1is−−−−→ Σs+1Ys

Σs+1js−−−−→ Σs+1Ws

(see Definition A.1 for the definition of an exact triangle in an additive category). Furthermore,
since SH is tensor triangulated, the sequence remains exact after applying E ⊗ − (see Proposi-
tion A.11 for details), so that taking E-homology yields the following exact sequence of homology
groups:

E∗(Σ
sYs+1)

E∗(Σ
sis)−−−−−−→ E∗(Σ

sYs)
E∗(Σ

sjs)−−−−−−→ E∗(Σ
sWs)

E∗(Σ
sks)−−−−−−→ E∗(Σ

s+1Ys+1)
E∗(Σ

s+1is)−−−−−−−→ E∗(Σ
s+1Ys).

Then since E∗(is) : E∗(Ys+1) → E∗(Ys) is the zero map (by Lemma 7.3) and we have natural
isomorphisms

E∗(Σ
tX)

νt
X−−→ E∗(Σ

tX)
ttX−−→ E∗−t(X)

(the first from Definition 7.5 and the latter from Lemma 4.4), we have that E∗(Σ
tis) : E∗(Σ

tYs+1) →
E∗(Σ

tYs) is the zero map for all t ∈ Z, so that in particular the above exact sequence splits to
yield the short exact sequence

0 → E∗(Σ
sYs)

E∗(Σ
sjs)−−−−−−→ E∗(Σ

sWs)
E∗(Σ

sks)−−−−−−→ E∗(Σ
s+1Ys+1) → 0.
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Then we may splice these sequences together for s ≥ 0 to yield the following diagram:

0 E∗(Y ) E∗(W0) E∗(ΣW1) E∗(Σ
2W2) · · ·

E∗(ΣY1) E∗(Σ
2Y2)

E∗(j0) E∗(δ0) E∗(δ1)

E∗(k0) E∗(Σj1) E∗(Σk1) E∗(Σ
2j2)

It is straightforward to check the top row is exact by exactness of the short exact sequences, as
desired. □

Proposition 7.8. Let (E,µ, e) be a commutative monoid object, and X and Y objects in SH.
Suppose further that:

• E is flat (Definition 6.5) and cellular (Definition 3.1),
• X is cellular, and E∗(X) is a graded projective left π∗(E)-module (via Proposition 4.3),
and

• Y is cellular.

Then for all s ∈ Z and a ∈ A, the line in the first page of the E-Adams spectral sequence for the
computation of [X,Y ]∗ (Definition 7.2)

0 → E0,a+s
1 (X,Y )

d1−→ E1,a+s−1
1 (X,Y )

d1−→ E2,a+s−2
1 (X,Y ) → · · · → Es,a1 (X,Y ) → · · ·

is isomorphic to the complex obtained by applying Homa+s
E∗(E)(E∗(X),−) to the complex of A-graded

left E∗(E)-comodules

0 → E∗(W0)
E∗(δ0)−−−−→ E∗(ΣW1)

E∗(δ1)−−−−→ E∗(Σ
2W2) → · · · → E∗(Σ

sWs) → · · ·

from Lemma 7.7.

Proof. By Lemma 7.6, since E and Y are cellular, Wt is as well for each t ≥ 0. Furthermore, for
t > 0, we have isomorphisms

St ⊗Wt

νt
Wt−−→ ΣtWt,

and by Lemma 3.4, the object St⊗Wt is cellular since S
t and Wt are. Hence, by Proposition 6.8,

the complex

0 → E∗(W0)
E∗(δ0)−−−−→ E∗(ΣW1)

E∗(δ1)−−−−→ E∗(Σ
2W2) → · · · → E∗(Σ

sWs) → · · ·

actually lives in E∗(E)-CoModA, as desired. Now, let t ≥ 0, and consider the following diagram:

[X,Wt]a+s−t [X,ΣtWt]a+s [X,ΣtWt]a+s

[X,ΣYt+1]a+s−t [X,ΣtΣYt+1]a+s

[X,Σ1Yt+1]a+s−t [X,ΣtΣ1Yt+1]a+s [X,Σt+1Yt+1]a+s

[X,Yt+1]a+s−t−1 [X,Σt+1Yt+1]a+s

[X,Wt+1]a+s−t−1 [X,Σt+1Wt+1]a+s [X,Σt+1Wt+1]a+s

stX,Wt

st+1
X,Wt+1

(νt
Wt

)
∗

(νt+1
Wt+1

)
∗

(kt)∗

(νYt+1
)
∗

s1X,Yt+1

(jt+1)∗

(Σtkt)∗

(ΣtνYt+1
)
∗

st
X,Σ1Yt+1

stX,ΣYt+1

(ϕt,1⊗Yt+1)∗
st+1
X,Yt+1

(Σt+1jt+1)∗

(Σtkt)∗

(Σt+1jt+1)∗

(νt+1
Yt+1

)
∗

(νt
ΣYt+1

)
∗

(δt)∗
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where here the saX,Y : [X,ΣaY ]∗
∼= [X,Y ]∗−a’s are the natural isomorphisms from Definition 2.9.

By unravelling definitions, we have the top left object is Et,a+s−t
1 (X,Y ) and the bottom left

object is Et+1,a+s−t−1
1 , and the vertical left composition in the above diagram is the differential

d1 between them. The first, second, and fourth rectangles from the top on the left rectangle
commute by naturality of the sa’s. Furthermore, a simple diagram chase and coherence of the ϕ’s
(Remark 2.4) yields that the third rectangle on the left commutes. The trapezoids on the right
commute by naturality of νt and νt+1. Finally, the middle right triangle commutes by how we
defined νt+1 in terms of νt.

Now, consider the following diagram:

Et,a+s−t
1 (X,Y ) Et+1,a+s−t−1

1 (X,Y )

[X,ΣtWt]a+s [X,Σt+1Wt+1]a+s

[X,ΣtWt]a+s [X,Σt+1Wt+1]a+s

HomE∗(E)(E∗(Σ
a+sX), E∗(Σ

tWt)) HomE∗(E)(E∗(Σ
a+sX), E∗(Σ

t+1Wt+1))

Homa+s
E∗(E)(E∗(X), E∗(Σ

tWt)) Homa+s
E∗(E)(E∗(X), E∗(Σ

t+1Wt+1))

(stX,Wt
)
−1 (st+1

X,Wt+1
)
−1

(νt
Wt

)
∗

(νt+1
Wt+1

)
∗

(δt)∗

d1

E∗(−)

E∗(δt)

E∗(−)

((ta+s
X )

−1
)
∗

E∗(δt)

((ta+s
X )

−1
)
∗

where here the maps ta+s
X : E∗(Σ

a) → E∗−a(X) are the E∗(E)-comodule isomorphisms from
Lemma 6.10. We have just shown the top region commutes. Furthermore, since X and ΣtWt

are cellular for all t ≥ 0, the arrows labelled E∗(−) are well-defined, and they clearly make the
middle rectangle commute (a simple diagram chase suffices). The bottom rectangle also clearly
commutes, Thus, it suffices to show that the maps labelled E∗(−) are isomorphisms. To that
end, consider the following diagram:

[X,ΣtWt]a+s HomE∗(E)(E∗(Σ
a+sX), E∗(Σ

tWt))

[X,E ⊗ ΣtYt]a+s HomE∗(E)(E∗(Σ
a+sX), E∗(E ⊗ ΣtYt))

E∗(−)

f∗ E∗(f)∗

E∗(−)

where here f : ΣtWt → E ⊗ ΣtYt is the isomorphism

ΣtWt
νt
W−−→ ΣtWt = St ⊗ E ⊗ Yt

τ⊗Yt−−−→ E ⊗ St ⊗ Yt = E ⊗ ΣtYt.

The bottom horizontal arrow is an isomorphism by Theorem 6.11. Thus, the top horizontal arrow
is an isomorphism, as desired. Showing

E∗(−) : [X,Σt+1Wt+1]a+s → HomE∗(E)(E∗(Σ
a+sX), E∗(Σ

t+1Wt+1))

is an isomorphism is entirely analagous. Thus, for each t ≥ 0, we have constructed isomorphisms

Et,a+s−t(X,Y )
∼=−→ Homa+s

E∗(E)(E∗(X), E∗(Σ
tWt))
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such that the following diagram commutes:

Et,a+s−t(X,Y ) Et+1,a+s−t−1(X,Y )

Homa+s
E∗(E)(E∗(X), E∗(Σ

tWt)) Homa+s
E∗(E)(E∗(X), E∗(Σ

t+1Wt+1))

d1

∼=

Homa+s
E∗(E)

(E∗(X),E∗(δt))

∼=

Hence, we have proven the desired result. □

7.3. Convergence of the spectral sequence. In this subsection, we briefly sketch some con-
verge properties of the spectral sequence. Boardman already works quite generally in [5], so most
of this is simply a review of the material contained within. From now on, we assume familiarity
with derived limits of (A-graded) abelian groups (see Boardman §1), filtered (A-graded) groups
(see Boardman §2), convergence of spectral sequences (Boardman Definition 5.2) and conditional
convergence of a spectral sequence associated to an unrolled exact couple (Boardman Definition
5.10). We adopt his notation, writing

Es∞(X,Y ) :=

( ∞⋂
r=1

Zsr

)
/

( ∞⋃
r=1

Bsr

)
and RE∞(X,Y ) := Rlim

r
Zsr

to denote the E∞-term and the derived E∞-term of the spectral sequence, respectively.
Ideally, the E-Adams spectral sequence for [X,Y ]∗ would give us information which allows

us to compute the group [X,Y ]∗. Note that [X,Y ]∗ is the colimit of the unrolled exact couple
which determines the spectral sequence, as Ys = Y for s < 0. Furthermore, since (Er(X,Y ), dr)
is a half-plane spectral sequence with entering differentials, we may apply the results from [5,
§7], where suitable conditions under which the spectral sequence converges to the colimit [X,Y ]∗
are described (in particular, see Theorem 7.3 there). Unfortunately, in practice, the conditions
outlined there are not usually satisfied for this spectral sequence, namely, in order for the spectral
sequence to converge to [X,Y ]∗, we must have that lims [X,Ys]∗ = 0. There is no reason to
believe this would be satisfied, so we must take an alternative approach. Following Section 5 of
Bousfield’s seminal paper [6], we can instead set up the spectral sequence by means of a tower
under Y . First, we must define the E-nilpotent completion of Y :

Definition 7.9 ([6, pgs. 272–273]). Let (E,µ, e) be a monoid object in SH, and Y any object.

Write E for the fiber (Proposition A.4) of the unit S
e−→ E, so we have a distinguished triangle

E → S
e−→ E → ΣE.

Set Y0 := Y and W0 := Y ⊗E, and for s > 0 define Ys := Y ⊗E
s
and Ws := Ys ⊗E. Then since

SH is tensor triangulated, for each s ≥ 0 we may tensor the above sequence with Ys on the right,
which yields the following distinguished triangle

Ys+1
i−→ Ys

j−→Ws
k−→ ΣYs+1.

Then for s ≥ 0, define Y/Y s (up to non-canonical isomorphism) to be the cofiber of is : Ys →
Y0 = Y (so in particular we may take Y/Y1 = E ⊗ Y and Y/Y0 = 0), so we have a distinguished
triangle

Ys
is−→ Y

b−→ Y/Ys
c−→ ΣYs.
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Then for each s ≥ 0, by the octahedral axiom (axiom TR5) for a triangulated category applied
to the triangles

Ys+1
i−→ Ys

j−→Ws
k−→ ΣYs+1

Ys
is−→ Y

b−→ Y/Ys
c−→ ΣYs

Ys+1
is+1

−−−→ Y
b−→ Y/Ys+1

c−→ ΣYs+1,

there exists a distinguished triangle

(8) Ws
p−→ Y/Ys+1

q−→ Y/Ys
r−→ ΣWs

which makes the following diagram commute:

(9)

Ys+1 Y Y/Ys ΣWs

Ys Y/Ys+1 ΣYs

Ws ΣYs+1

is+1 b r

i

j
k

Σi

Σjb q

p c

is c

The triangles from (8) for s ≥ 0 may be spliced together to yield a tower {Y/Ys}s under Y :

Y · · · Y/Y3 Y/Y2 Y/Y1 Y/Y0 0

W3 W2 W1 W0

q q q

rp rprpr

where here the dashed arrows are really (degree −1) maps Y/Ys → ΣWs. The fact that this

is a tower under Y follows from diagram (9), which tells us that Y
b−→ Y/Ys factors as Y

b−→
Y/Ys+1

q−→ Y/Ys. We define the E-nilpotent completion of Y to be the object Y ∧
E (defined up to

non-canonical isomorphism) obtained as the homotopy limit of this tower (Definition A.6):

Y ∧
E := holim

s
Ys/Y.

Since Y ∧
E is the homotopy limit of a tower under Y , it comes equipped with a canonical map

Y → Y ∧
E .

Remark 7.10. In [6], the E-nilpotent completion of Y is denoted “E∧Y ”, while the notation
“Y ∧

E ” we use here is standard in the modern literature.

It turns out that applying [X,−]∗ to this tower under Y yields an exact couple, the associated
spectral sequence of which is precisely the E-Adams spectral sequence for [X,Y ]∗.

Proposition 7.11. Consider the tower under Y constructed in Definition 7.9:

Y · · · Y/Y3 Y/Y2 Y/Y1 Y/Y0 0

W3 W2 W1 W0

q q q

rp rprpr
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We may extend it to the right by defining Y/Ys = Ws = 0 for s < 0. Then by Proposition 2.10,
we may apply the functor [X,−]∗ which yields the following A-graded unrolled exact couple:

· · · [X,Y/Ys+2]∗ [X,Y/Ys+1]∗ [X,Y/Ys]∗ [X,Y/Ys−1]∗ · · ·

[X,Ws+2]∗ [X,Ws+1]∗ [X,Ws]∗ [X,Ws−1]∗

q q q

δpδpδpδ

Thus by [5, §0], there is an induced spectral sequence. This spectral sequence is precisely the
E-Adams spectral sequence for [X,Y ]∗ (Definition 7.2).

Proof. Let (E′
r(X,Y ), d′r) denote this new spectral sequence. For s ≥ 0, define

fs : [X,Y/Ys]∗
c∗−→ [X,ΣYs]∗

(νYs )∗−−−−→ [X,Σ1Ys]∗
s1X,Ys−−−→ [X,Ys]∗−1,

and for s < 0 let it be the unique map

fs : [X,Y/Ys]∗ = 0 → [X,Ys]∗−1 = [X,Y ]∗−1.

For s ∈ Z, let
gs := idWs : [X,Ws]∗ → [X,Ws]∗.

We claim these maps (fs, gs)s define a homomorphism of A-graded unrolled exact couples between
the unrolled exact couple given above determined by the quotient tower {Y/Ys} under Y , and
that obtained by applying [X,−]∗ to the canonical E-Adams resolution, i.e., that the following
diagram commutes for all s ∈ Z:

[X,Y/Ys]∗ [X,Y/Ys−1]∗ [X,Ws−1]∗−1 [X,Y/Ys]∗−1

[X,Ys]∗−1 [X,Ys−1]∗−1 [X,Ws−1]∗−1 [X,Ys]∗−2

fs fs−1 fs

In the case s ≤ 0, we know Y/Ys = Y/Ys−1 = Ws−1 = 0, so that the top row is entirely 0, and
thus the diagram must commute. In the case s > 0, by unravelling definitions we have that the
diagram becomes

[X,Y/Ys]∗ [X,Y/Ys−1]∗ [X,Ws−1]∗−1 [X,Y/Ys]∗−1

[X,ΣYs]∗ [X,ΣYs−1]∗ [X,ΣWs−1]∗ [X,ΣYs]∗−1

[X,Σ1Ys]∗ [X,Σ1Ys−1]∗ [X,Σ1Ws−1]∗ [X,Σ1Ys]∗−1

[X,Ys]∗−1 [X,Ys−1]∗−1 [X,Ws−1]∗−1 [X,Ys]∗−2

q∗ δ p∗

c∗

(νYs )∗

s1X,Ys

i∗

c∗

(νYs−1
)
∗

s1X,Ys−1

j∗ ∂∗

c∗

(νYs )∗

s1X,Ys

Σi∗

Σ1i∗ k∗

r∗

(νWs−1
)
∗

Σj∗

Σ1j∗

s1X,Ws−1

Clearly commutativity of this diagram yields that the given collection of maps define a homo-
morphism of A-graded unrolled exact couples. Each rectangular region commutes by naturality,
as does the middle bottom trapezoidal region. The two regions involving δ and ∂ commute by
unravelling how the differential is defined in Proposition 2.10. Finally, the remaining two regions
commute by commutativity of Equation 9.

Thus, we have defined a homomorphism of A-graded unrolled exact couples, and it is straight-
forward to check that therefore the maps gs lift to well-defined graded homomorphisms g̃sr :
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Esr(X,Y ) → Esr
′(X,Y ) for s ≥ 0 sending a class [x] ∈ Zsr/B

s
r = Esr(X,Y ) to the class g̃sr([x]) :=

[gs(x)] in Z
s
r
′/Bsr

′ = Esr
′(X,Y ), which make the following diagrams commute for all r ≥ 1:

Er(X,Y ) E′
r(X,Y ) ker dr ker d′r

Er(X,Y ) E′
r(X,Y ) Er+1(X,Y ) E′

r+1(X,Y )

g̃r

d′rdr

g̃r

g̃r

g̃r+1

(commutativity of the first diagram implies the top arrow in the second diagram is well-defined).
Yet we know that each gs is the identity, so that we shown that (Er(X,Y ), dr) = (E′

r(X,Y ), d′r),
as desired. □

By means of this new presentation of the spectral sequence, we may consider the sense in which
the spectral sequence converges to the limit lims [X,Y/Ys]∗ of the tower {Y/Ys}s under Y , by
means [5, Theorem 7.4]. First of all, it is standard that since Y ∧

E is the homotopy limit of this
tower, we have a Milnor short exact sequence

0 → Rlim
s

[X,Y/Ys]∗+1 → [X,Y ∧
E ]∗ → lim

s
[X,Y/Ys]∗ → 0

(the same argument given in [5, Theorem 4.9] works, although we warn the reader that Boardman
has a sign error there — he writes the first term in the short exact sequence with −1, when it
should be +1). Thus, if Rlims [X,Y/Ys]∗ vanishes, we get an identification of the limit

lim
s

[X,Y/Ys]∗ = [X,Y ∧
E ]∗.

By [5, Theorem 7.4], this is further satisfied if the derived E∞-term RE∞(X,Y ) is zero, in which
case the spectral sequence converges strongly to the limit [X,Y ∧

E ]∗, meaning in particular the
natural maps

[X,Y ∧
E ]∗ → lim

s
[X,Y ∧

E ]∗/F
s[X,Y ∧

E ]∗

F s[X,Y ∧
E ]∗/F

s+1[X,Y ∧
E ]∗ → Es,∗∞ (X,Y )

are isomorphisms, where here F s is the decreasing filtration on [X,Y ∧
E ]∗ given by

F s[X,Y ∧
E ]∗ := ker([X,Y ∧

E ]∗ = lim
s

[X,Y/Ys]∗ → [X,Y/Ys]∗).

8. Future directions

In this section, we briefly touch on some future directions in which one could carry on this
work in our general setting.

• One could weaken the cellularity conditions required for the characterization of the E2

page of the E-Adams spectral sequence for [X,Y ]∗ (Theorem 7.4) by instead proving a
version of Theorem 5.1 for E-cellular objects, in the sense of the definition given on pg.
21 in the paper [9].

• One could set up a cohomological version of the E-Adams spectral sequence in SH, as in
[9, §3]. In order to show that it agrees with the homological E-Adams spectral sequence we
have constructed, one would need to develop some sort anaologue in SH of the finiteness
condition given in [9, Definitions 2.11 & 2.12].

• Much more could be said about properties of the Adams spectral sequence in SH, par-
ticularly convergence. Are there connectivity conditions we can place on π∗(Y ) which
guarantee convergence of the E-Adams spectral sequence for [X,Y ]∗ to [X,Y ∧

E ]∗?
• Under what conditions does a morphisms in SH induce a homomorphism of E-Adams
spectral sequences, as in [28, Proposition 11.4.1]? Similarly, how should one define an E-
Adams resolution in SH in a way such that the E-Adams spectral sequence is independent
of the choice of resolution?
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• One could define products on the E-Adams spectral sequence in SH as in [28, Sections
11.7 & 11.8].

• Given a prime p, one could define the “mod-p Moore object” in SH to be the cofiber of

the multiplication-by-p map S
p−→ S. Using this object, one could define the p-completion

Y ∧
p of an object Y in SH, as in [28, Definition 11.5.4]. Under which conditions is the

canonical map Y → Y ∧
p an isomorphism in SH, and how are π∗(Y ) and and π∗(Y

∧
p )

related?
• There is a symmetric monoidal realization functor from the motivic stable homotopy
category SHC over SpecC to the classical stable homotopy category hoSp given by
Betti realization. Under the standard grading anticommutativity conventions for these
categories (see Examples 4.8 and 4.9), it further induces a ring homomorphism from the
motivic stable homotopy ring (which is Z2-graded) to the classical stable homotopy ring
(which is Z-graded) which sends homogeneous elements of degree (p, q) to elements of
degree p. Furthermore, this functor induces a homomorphism of spectral sequence from
the C-motivic Adams spectral sequence to the classical Adams spectral sequence. We
refer the reader to the Levine’s paper [14] for a more in-depth exposition of this story.
Similarly, there are realization functors from SHC to the C2-equivariant stable homotopy
category with similar properties (see [10, Remarks 3 & 4]). This motivates the idea
of a “homomorphism of tensor-triangulated categories with sub-Picard grading”, which
should be functors which are in some sense compatible with the structure described in
Definition 2.3. Furthermore, these functors should induce homomorphisms of homotopy
groups and of Adams spectral sequences.

• More work could be done to examine the graded anticommutativity properties of homo-
topy rings in the G-equvariant stable homotopy category, using the language and methods
of Section 4 and [10].

• In the classical, equivariant, and motivic stable homotopy categories, given an abelian
group G, there is an associated Eilenberg-MacLane spectrum HG, and this assignment
yields a monoidal functor from abelian groups to the stable homotopy category. Given a
monoidal functor Ab → SH sending G to HG, what can we say about the HG-Adams
spectral sequence? when is the HFp-completion.

• In the classical, equivariant, and motivic stable homotopy categories, the grading comes
from an abelian group A which also happens to be a ring (A = Z,Z2, RO(G)). Fur-
thermore, in the classical and motivic stable homotopy categories, this additional ring
structure comes into play with regards to the graded anticommutativity properties of
π∗(S) (e.g., in the classical case, we have a commutativity formula on π∗(S) given by
x ·y = y ·x · (−1)|x|·|y|). What can be said about a tensor triangulated category with sub-
Picard grading coming from a ring, and can we impose any additional conditions on the
sub-Picard grading which allows us to say something about the graded anticommutativity
properties of π∗(S)?

• What conditions can we impose on a flat, cellular commtative monoid object (E,µ, e)
in SH which give us a filtration that allows us to create a May spectral sequence for
computing the E2 page of the E-Adams spectral sequence?

As the above exhibits, we have really only scratched the surface of what is possible in this
setting, and much more could be done to develop the theory of tensor triangulated categories
with sub-Picard grading.
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Appendix A. Triangulated categories

A.1. Triangulated categories and their basic properties. In this appendix, we fix a trian-
gulated category (C,Σ,D) (Definition 2.1). We will denote the hom-group C(X,Y ) by [X,Y ]. To
start, recall the following definition:

Definition A.1. A sequence

X1 → X2 → · · · → Xn

of arrows in C is exact if, for any object A in C, the induced sequences

[A,X1] → [A,X2] → · · · → [A,Xn−1] → [A,Xn]

and

[Xn, A] → [Xn−1, A] → · · · → [X2, A] → [X1, A]

are exact sequences of abelian groups.

It is straightforward to verify that if we have an exact sequence in C

X1
f1−→ X2

f2−→→ · · · → Xn,

then the sequence remains exact if we change the signs of any of the maps involved. We will use
this fact often without comment.

Proposition A.2. Every distinguished triangle is an exact sequence (in the sense of Defini-
tion A.1).

Proof. Suppose we have some distinguished triangle

X
f−→ Y

g−→ Z
h−→ ΣX.

Then first we would like to show that given any object A in C, the sequence

[A,X]
f∗−→ [A, Y ]

g∗−→ [A,Z]
h∗−→ [A,ΣX]

is exact. First we show exactness at [A, Y ]. To see im f∗ ⊆ ker g∗, note it suffices to show that
g ◦ f = 0. Indeed, consider the commuting diagram

X X 0 ΣX

X Y Z ΣX
f g h

f

The top row is distinguished by axiom TR1. Thus by TR3, the following diagram commutes:

X X 0 ΣX

X Y Z ΣX
f g h

f

In particular, commutativity of the second square tells us that g ◦ f = 0, as desired. Conversely,
we’d like to show that ker g∗ ⊆ im f∗. Let ψ : A → Y be in the kernel of g∗, so that g ◦ ψ = 0.
Consider the following commutative diagram:

A 0 ΣA ΣA

Y Z ΣX ΣY

−ΣidA

g h −Σf

ψ
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The top row is distinguished by axioms TR1 and TR4. The bottom row is distinguished by axiom

TR4. Thus by axiom TR3 there exists a map ϕ̃ : ΣA → ΣX such that the following diagram
commutes:

A 0 ΣA ΣA

Y Z ΣX ΣY

−ΣidA

g h −Σf

ψ ϕ̃ Σψ

Now, since Σ is an equivalence, it is a full functor, so that in particular there exists some ϕ : A→ X

such that ϕ̃ = Σϕ. Then by faithfullness, we may pull back the right square to get a commuting
diagram

A A

X Y

−idA

ψϕ

−f

Hence,

f∗(ϕ) = f ◦ ϕ (∗)
= −((−f) ◦ ϕ) = −(ψ ◦ (−idA))

(∗)
= ψ ◦ idA = ψ,

where the equalities marked (∗) follow by bilinearity of composition in an additive category. Thus
ψ ∈ im f∗, as desired, meaning ker g∗ ⊆ im f∗.

Now, we have shown that

[A,X]
f∗−→ [A, Y ]

g∗−→ [A,Z]
h∗−→ [A,ΣX]

is exact at [A, Y ]. It remains to show exactness at [A,Z]. Yet this follows by the exact same
argument given above applied to the sequence obtained from the shifted triangle (TR4)

Y
g−→ Z

h−→ ΣX
−Σf−−−→ ΣY

On the other hand, we would like to show that

[ΣX,A]
h∗

−→ [Z,A]
g∗−→ [Y,A]

f∗

−→ [X,A]

is exact. As above, since we can shift the triangle, it suffices to show exactness at [Z,A]. First,
since we have shown g ◦ f = 0, we have f∗ ◦ g∗ = (g ◦ f)∗ = 0, so that im g∗ ⊆ ker f∗, as desired.
Conversely, in order to see ker f∗ ⊆ im g∗, suppose ψ : Y → A is in the kernel of f∗, so that
ψ ◦ f = 0. Consider the following commuting diagram:

X Y Z ΣX

0 A A 0

f g h

ψ

The top row is a distinguished triangle by assumption, and the bottom row is distinguished by
axioms TR1 and TR4 for a triangulated category, along with the fact that Σ0 = 0 since Σ is
additive. Thus by axiom TR3 there exists a map ϕ : Z → A such that ϕ ◦ g = ψ, i.e., g∗(ϕ) = ψ,
so that ϕ ∈ im g∗ as desired. □

Lemma A.3. Suppose we have a commutative diagram

X Y Z ΣX

X ′ Y ′ Z ′ ΣX ′

f g h

f ′ g′ h′

j k ℓ Σj

with both rows distinguished. Then if any two of the maps j, k, and ℓ are isomorphisms, then so
is the third.



72 ISAIAH DAILEY

Proof. Suppose we are given any object W in C, and consider the commutative diagram

[W,X] [W,Y ] [W,Z] [W,ΣX] [W,ΣY ] [W,ΣZ] [W,Σ2X]

[W,X ′] [W,Y ′] [W,Z ′] [W,ΣX ′] [W,ΣY ′] [W,ΣZ ′] [W,Σ2X ′]

f∗ g∗ k∗ −Σf∗

j∗

f ′
∗ g′∗ h′

∗ −Σf ′
∗

k∗ Σj∗ Σk∗

−Σg∗

−Σg′∗ −Σh′
∗

−Σh∗

Σℓ∗ Σ2j∗ℓ∗

The rows are exact by Proposition A.2 and repeated applications of axiom TR4. It follows by
the five lemma and faithfulness of Σ that if j and k are isomorphisms, then ℓ∗ is an isomorphism.
Similarly, if k and ℓ are isomorphisms then Σj∗ is an isomorphism. Finally, if ℓ and j are
isomorphisms, then Σk∗ is an isomorphism. The desired result follows by faithfullness of Σ and
the Yoneda embedding. □

Proposition A.4. Given an arrow f : X → Y in C, there exists an object Ff called the fiber of
f , and a distinguished triangle

Ff → X
f−→ Y → ΣFf (∼= Cf ).

Proof. Since Σ is an equivalence, there exists some functor Ω : C → C and natural isomorphisms
ε : ΩΣ ⇒ IdC and η : IdC ⇒ ΣΩ. By axiom TR2, we have a distinguished triangle

X
f−→ Y

g−→ Cf
h−→ ΣX.

Now, consider the commutative diagram

X Y Cf ΣX

X Y ΣΩCf ΣX

g h

f g̃ h̃

ηCf

f

where g̃ = ηCf
◦ g, and h̃ = h ◦ η−1

Cf
. Since each vertical map is an isomorphism and the top

row is distinguished, the bottom row is also distinguished by axiom TR0. Now, since Σ is an
equivalence of categories, it is faithful, so that in particular there exists some map k : ΩCf → X

such that Σk = −h̃ =⇒ −Σk = h̃. Thus, we have a distinguished triangle of the form

X
f−→ Y

g̃−→ ΣΩCf
−Σk−−−→ ΣX.

Finally, by axiom TR4, we get a distinguished triangle

ΩCf
k−→ X

f−→ Y
g̃−→ ΣΩCf ,

so we may define the fiber of f to be ΩCf . □

A.2. Homotopy (co)limits in a triangulated category. In this subsection, we will assume
C has countable products and coproducts.

Definition A.5 ([19, Definition 1.6.4]). Let

X0
j1−→ X1

j2−→ X2
j3−→ X3 → · · ·

be a sequence of objects and morphisms in C. The homotopy colimit of the sequence, denoted
hocolimXi, is given (up to non-canonical isomorphism) as the cofiber of the map

∞⊕
i=0

Xi
1−shift−−−−→

∞⊕
i=0

Xi,
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where the shift map
⊕∞

i=0Xi
shift−−−→

⊕∞
i=0Xi is understood to be the direct sum of ji+1 : Xi →

Xi+1, i.e., by the universal property of the coproduct, it is induced by the maps

Xs
js+1−−−→ Xs+1 ↪→

∞⊕
i=0

Xi.

Definition A.6. Assume that C has countable products, and let

· · · → X3
j3−→ X2

j2−→ X1
j1−→ X0

be a sequence of objects and morphisms in C. The homotopy limit of the sequence, denoted
holimXi, is given (up to non-canonical isomorphism) as the fiber (Proposition A.4) of the map

∞∏
i=0

Xi
1−shift−−−−→

∞∏
i=0

,

where the shift map
∏∞
i=0Xi

shift−−−→
∏∞
i=0Xi is understood to be the product of ji : Xi → Xi−1,

i.e., by the universal property of the product, it is induced by the maps

∞∏
i=0

Xi ↠ Xs+1
js+1−−−→ Xs.

A.3. Adjointly triangulated categories. From now on, we will assume that C is an adjointly
triangulated category (Definition 2.8) with inverse shift Ω, unit η : IdC ⇒ ΣΩ, and counit
ε : ΩΣ ⇒ IdC.

Lemma A.7. Given a triangle

X
f−→ Y

g−→ Z
h−→ ΣX,

it can be shifted to the left to obtain a distinguished triangle

ΩZ
−h̃−−→ X

f−→ Y
Ω̃g−−→ ΣΩZ,

where h̃ : ΩZ → X is the adjoint of h : Z → ΣX and Ω̃g : Y → ΣΩZ is the adjoint of
Ωg : ΩY → ΩZ.

Proof. Note that unravelling definitions, h̃ and g̃ are the compositions

h̃ : ΩZ
Ωh−−→ ΩΣX

εX−−→ X and Ω̃g : Y
ηY−−→ ΣΩY

ΣΩg−−−→ ΣΩZ.

Now consider the following diagram:

(10)

X Y Z ΣX

X Y ΣΩZ ΣX

f g h

f Ω̃g Σh̃

ηZ

The left square commutes by definition. To see that the middle square commutes, expanding
definitions, note it is given by the following diagram:

Y Z

Y ΣΩY ΣΩZ

g

ηY ΣΩg

ηY
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and this commutes by naturality of η. To see that the right square commutes, consider the
following diagram:

Z ΣX

ΣΩZ ΣΩΣX ΣX
ΣΩh

ηZ

h

ΣεX

ηΣX

By functoriality of Σ, the bottom composition is Σh̃. The left region commutes by naturality of
η. Commutativity of the right region is precisely one of the the zig-zag identities. Hence, since
diagram (10) commutes, the vertical arrows are isomorphisms, and the top row is distinguished,
we have that the bottom row is distinguished as well by axiom TR0. Then by axiom TR4, since

(f, Ω̃g,Σh̃) is distinguished, so is the triangle

ΩZ
−h̃−−→ X

f−→ Y
Ω̃g−−→ ΣΩZ. □

Lemma A.8. Given a distinguished triangle

X
f−→ Y

g−→ Z
h−→ ΣX,

for any n > 0, the triangle

ΩnX
(−1)nΩnf−−−−−−→ ΩnY

(−1)nΩng−−−−−−→ ΩnZ
(−1)nΩnh−−−−−−→ ΩnΣX ∼= ΣΩnX,

is distinguished, where the final isomorphism is given by the composition

ΩnΣX = Ωn−1ΩΣX
Ωn−1εX−−−−−→ Ωn−1X

ηΩn−1X−−−−−→ ΣΩΩn−1X = ΣΩnX.

Proof. We give a proof by induction. First we show the case n = 1. Note by Lemma A.7, we
have that given a distinguished triangle

X
f−→ Y

g−→ Z
h−→ ΣX,

we can shift it to the left to obtain a distinguished triangle

ΩZ
−h̃−−→ X

f−→ Y
Ω̃g−−→ ΣΩZ,

where h̃ is the adjoint of h : Z → ΣX and Ω̃g is the adjoint of Ωg : ΩY → ΩZ. If we apply this
shifting operation again, we get the distinguished triangle

ΩY
−˜̃
Ωg−−−→ ΩZ

−h̃−−→ X
Ω̃f−−→ ΣΩY,

where unravelling definitions, Ω̃f is the right adjoint of Ωf : ΩX → ΩY and
˜̃
Ωg is the right

adjoint of Ω̃g, which itself is the left adjoint of Ωg, so
˜̃
Ωg = Ωg. Hence we have a distinguished

triangle

ΩY
−Ωg−−−→ ΩZ

−h̃−−→ X
Ω̃f−−→ ΣΩY.

We may again shift this triangle again and the above arguments yield the distinguished triangle

ΩX
−Ωf−−−→ ΩY

−Ωg−−−→ ΩZ
Ω̃(−h̃)−−−−→ ΣΩX,
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where Ω̃(−h̃) is the right adjoint of Ω(−h̃) = −Ωh̃ : ΩΩZ → ΩX. Explicitly unravelling defini-

tions, Ω̃(−h̃) = −̃Ωh̃ is the composition

[ΩZ
ηΩZ−−→ ΣΩΩZ

Σ(−Ωh̃)−−−−−→ ΣΩX] = −[ΩZ
ηΩZ−−→ ΣΩΩZ

ΣΩh̃−−−→ ΣΩX]

= −[ΩZ
ηΩZ−−→ ΣΩΩZ

ΣΩΩh−−−−→ ΣΩΩΣX
ΣΩεX−−−−→ ΣΩX]

= −[ΩZ
Ωh−−→ ΩΣX

εX−−→ X
ηX−−→ ΣΩX],

where the first equality follows by additivity of Σ and additivity of composition, the second follows

by further unravelling how h̃ is defined, and the third follows by naturality of η, which tells us
the following diagram commutes:

ΩZ ΩΣX X

ΣΩΩZ ΣΩΩΣX ΣΩX

ηΩZ

ΣΩΩh ΣΩεX

Ωh

ηΩΣX

εX

ηX

Thus indeed we have a distinguished triangle

ΩX
−Ωf−−−→ ΩY

−Ωg−−−→ ΩZ
−Ωh−−−→ ΩΣX ∼= ΣΩX,

where the last isomorphism is ηX ◦ εX , as desired.
Now, we show the inductive step. Suppose we know that given a distinguished triangle

X
f−→ Y

g−→ Z
h−→ ΣX,

that for some n > 0 the triangle

ΩnX
(−1)nΩnf−−−−−−→ ΩnY

(−1)nΩng−−−−−−→ ΩnZ
(−1)nhn

−−−−−→ ΣΩnX,

is distinguished, where hn : ΩnZ → ΣΩnX is the composition

ΩnZ
Ωnh−−−→ ΩnΣX

Ωn−1εX−−−−−→ Ωn−1X
ηΩn−1X−−−−−→ ΣΩnX.

Then by applying the n = 1 case to this triangle, we get that the following triangle is distinguished

Ωn+1X
−Ω((−1)nΩnf)−−−−−−−−−−→ Ωn+1Y

−Ω((−1)nΩng)−−−−−−−−−−→ Ωn+1Z
−Ω((−1)nhn)−−−−−−−−−→ ΩΣΩnX ∼= ΣΩn+1X,

where the final isomorphism is the composition

ΩΣΩnX
εΩnX−−−→ ΩnX

ηΩnX−−−→ ΣΩΩnX = ΣΩn+1X.

We claim that this is precisely the distinguished triangle given in the statement of the lemma for
n+1. First of all, note that −Ω((−1)nΩnf) = (−1)n+1Ωn+1f , −Ω((−1)nΩng) = (−1)n+1Ωn+1g,
and −Ω((−1)nhn) = (−1)n+1Ωhn by additivity of Ω, so that the triangle becomes

(11) Ωn+1X
(−1)n+1Ωn+1f−−−−−−−−−−→ Ωn+1Y

(−1)n+1Ωn+1g−−−−−−−−−→ Ωn+1Z
(−1)n+1Ωhn

−−−−−−−−→ ΩΣΩnX ∼= ΣΩn+1X.

Thus, in order to prove the desired characterization, it remains to show this diagram commutes:

Ωn+1Z ΩΣΩnX ΩnX

Ωn+1ΣX ΩnX ΣΩn+1X

(−1)n+1Ωhn

(−1)n+1Ωn+1h

ΩnεX ηΩnX

εΩnX

ηΩnX
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(The top composition is the last two arrows in diagram (11), and the bottom composition is the
last two arrows in the diagram in the statement of the lemma). Unravelling how hn is constructed,
by additivity of Ω it further suffices to show the outside of the following diagram commutes:

Ωn+1Z Ωn+1ΣX ΩnX ΩΣΩnX

ΩnX

Ωn+1ΣX ΩnX ΣΩn+1X

(−1)n+1Ωn+1h

ΩnεX ηΩnX

εΩnX

ηΩnX

(−1)n+1Ωn+1h ΩnεX ΩηΩn−1X

The left rectangle and bottom right triangle commute by definition. Finally, commutativity of
the top right trapezoid is precisely one of the zig-zag identities applied to Ωn−1X. Hence, we
have shown the desired result. □

Proposition A.9. Given a distinguished triangle

X
f−→ Y

g−→ Z
h−→ ΣX,

let h̃ : ΩZ → X be the left adjoint of h. Then the following infinite sequence is exact:

· · ·

Ωn+1Z ΩnX ΩnY ΩnZ Ωn−1X

· · ·

ΩZ X Y Z ΣX

· · ·

Σn−1Z ΣnX ΣnY ΣnZ Σn+1X

· · ·

(−1)n+1Ωnh̃ (−1)nΩnf

(−1)nΩn−1h̃(−1)nΩng

−h̃ f

g h

(−1)n−1Σnh (−1)nΣnf

(−1)nΣng (−1)nΣnh

In particular, it remains exact even if we remove the signs.

Proof. Exactness of

X
f−→ Y

g−→ Z
h−→ ΣX

−Σf−−−→ ΣY

is Proposition A.2 and axiom TR4. By induction using axiom TR4, for n > 0 we get that each
contiguous composition of three maps below is a distinguished triangle:

ΣnX
(−1)nΣnf−−−−−−→ ΣnY

(−1)nΣng−−−−−−→ ΣnZ
(−1)nΣnh−−−−−−→ Σn+1X

(−1)n+1Σn+1f−−−−−−−−−−→ Σn+1Y,
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thus the sequence is exact by Proposition A.2. It remains to show exactness of the LES to the
left of Y . It suffices to show that the row in the following diagram is exact for all n > 0:
(12)

ΩnX ΩnY ΩnZ Ωn−1X Ωn−1Y

ΩnΣX

(−1)nΩnf (−1)nΩng (−1)n−1Ωn−1f(−1)nΩn−1(εX◦Ωh)

(−1)nΩnh Ωn−1εX

First of all, to see exactness at ΩnY and ΩnZ, consider the following commutative diagram:

ΩnX ΩnY ΩnZ Ωn−1X

ΩnΣX

ΩnX ΩnY ΩnZ ΣΩnX

(−1)nΩnf (−1)nΩng (−1)nΩn−1(εX◦Ωh)

(−1)nΩnh Ωn−1εX

(−1)nΩnf (−1)nΩng

ηΩn−1X

(−1)nΩnh

(here the dashed arrow is the morphism which makes the diagram commute). The bottom row is
distinguished by Lemma A.8. Then by axiom TR0, the top row is distinguished, and thus exact
by Proposition A.2. Thus we have shown exactness of (12) at ΩnY and ΩnZ. It remains to show
exactness at Ωn−1X. In the case n = 1, we want to show exactness at X in the following diagram:

ΩZ X Y

ΩΣX

−(εX◦Ωh) f

−Ωh εX

Unravelling definitions, εX ◦ Ωh is precisely the adjoint h̃ : ΩZ → X of h : Z → ΣX, in which
case we have that the row in the above diagram fits into a distinguished triangle by Lemma A.7,
and thus it is exact by Proposition A.2. To see exactness at Ωn−1X in diagram (12), note that
if we apply Lemma A.7 to the sequence Lemma A.8 for n − 1, then we get that the following
composition fits into a distinguished triangle, and is thus exact:

ΩnZ
−k−−→ Ωn−1X

(−1)n−1Ωn−1f−−−−−−−−−−→ Ωn−1Y,

where k : Ω(Ωn−1Z) → Ωn−1X is the adjoint of the composition

Ωn−1Z
(−1)n−1Ωn−1h−−−−−−−−−−→ Ωn−1ΣX

Ωn−2εX−−−−−→ Ωn−2X
ηΩn−2X−−−−−→ ΣΩn−1X.

Further expanding how adjoints are constructed, k is the composition

ΩnZ
(−1)n−1Ωnh−−−−−−−−→ ΩnΣX

Ωn−1εX−−−−−→ Ωn−1X
ΩηΩn−2X−−−−−−→ ΩΣΩn−1X

εΩn−1X−−−−−→ Ωn−1X.

Thus, in order to show exactness of (12) at Σn−1X, it suffices to show that k = (−1)n−1Ωn−1(εX ◦
Ωh). To that end, consider the following diagram:

ΩnZ ΩnΣX Ωn−1X ΩΣΩn−1X

ΩnΣX Ωn−1X

(−1)n−1Ωnh Ωn−1εX ΩηΩn−2X

εΩn−1X(−1)n−1Ωnh

Ωn−1εX

The top composition is k, while the bottom composition is (−1)n−1Ωn−1(εX ◦Ωh). The left region
commutes by definition, while commutativity of the right region is precisely one of the zig-zag
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identities applied to Ωn−2X. Thus, we have shown that −k = (−1)nΩn−1(εX ◦ Ωh), so (12) is
exact at Ωn−1X, as desired. □

A.4. Tensor triangulated categories. In what follows, we fix a tensor triangulated category
(C,⊗, S,Σ, e,D) (Definition 2.2).

Lemma A.10. Let A
a−→ B

b−→ C
c−→ D be any sequence isomorphic to a distinguished triangle.

Then given any E in C, the sequences

E ⊗A
E⊗a−−−→ E ⊗B

E⊗b−−−→ E ⊗ C
E⊗c−−−→ E ⊗D

and

A⊗ E
a⊗E−−−→ B ⊗ E

b⊗E−−−→ C ⊗ E
c⊗E−−−→ D ⊗ E

are exact.

Proof. Since (a, b, c) is isomorphic to a distinguished triangle, there exists a commuting diagram
in SH

X Y Z ΣX

A B C D

f g h

α

a b c

β γ δ

where the top row is distinguished and the vertical arrows are isomorphisms. Then the following
diagram commutes by functoriality of −⊗−:

E ⊗X E ⊗ Y E ⊗ Z Σ(E ⊗X)

E ⊗ ΣX

E ⊗A E ⊗B E ⊗ C E ⊗D

E⊗f E⊗g E⊗′h

E⊗α

E⊗a E⊗b E⊗c

E⊗β E⊗γ

E⊗h e′E,X

E⊗δ

(E⊗δ)◦(e′E,X)−1

The top triangle is distinguished by axiom TT3 for a tensor triangulated category, thus ex-
act by Proposition A.2, so that the bottom triangle is also exact since the vertical arrows are
isomorphisms and each square commutes. Similarly, the following diagram also commutes by
functoriality of −⊗−:

X ⊗ E Y ⊗ E Z ⊗ E Σ(X ⊗ E)

ΣX ⊗ E

A⊗ E B ⊗ E C ⊗ E D ⊗ E

f⊗E g⊗E h⊗′E

α⊗E

a⊗E b⊗E c⊗E

β⊗E γ⊗E (δ⊗E)◦e−1
X,E

h⊗E eX,E

δ⊗E

The top row is distinguished by axiom TT3 for a tensor triangulated category, thus exact by
Proposition A.2, so that the bottom triangle is also exact since the vertical arrows are isomor-
phisms and each square commutes. □

Proposition A.11. Suppose we have a distinguished triangle

X → Y → Z → ΣX

in C. Then given any object E in C, the long exact sequence given in Proposition A.9 remains
exact after applying E ⊗− or −⊗ E.
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Proof. Recall that in the proof of Proposition A.9 we showed that the sequence was exact by
showing that any two consecutive maps were isomorphic to a part of a distinguished triangle.
Then the desired result follows from Lemma A.10. □

Appendix B. A-graded objects

In this appendix, we fix an abelian group A once and for all. We assume the reader is familiar
with the basic theory of (non-commutative, unital) rings and modules over them.

B.1. A-graded abelian groups, rings, and modules.

Definition B.1. An A-graded abelian group is an abelian group B along with a subgroup Ba ≤ B
for each a ∈ A such that the canonical map⊕

a∈A
Ba → B

sending (xa)a∈A to
∑
a∈A xa is an isomorphism. Given two A-graded abelian groups B and C, a

homomorphism f : B → C is a homomorphism of A-graded abelian groups, or just an A-graded
homomorphism, if it preserves the grading, i.e., if it restricts to a map Ba → Ca for all a ∈ A.

We denote the category of A-graded abelian groups and A-graded homomorphisms between
them by AbA

It is easy to see that an A-graded abelian group B is generated by its homogeneous elements,
that is, nonzero elements x ∈ B such that there exists some a ∈ A with x ∈ Ba. Furthermore, by
the universal property of the coproduct, given two A-graded abelian groups B and C, the data of
an A-graded homomorphism φa : B → C is precisely the data of homomorphisms φa : Ba → Ca.

Remark B.2. Clearly the condition that the canonical map
⊕

a∈ABa → B is an isomorphism
requires that Ba ∩ Bb = 0 if a ̸= b. In particular, given a homogeneous element x ∈ B, there
exists precisely one a ∈ A such that x ∈ Ba. We call this a the degree of x, and we write |x| = a.

Definition B.3. An A-graded ring is a ring R such that its underlying abelian group R is A-
graded and the multiplication map R × R → R restricts to Ra × Rb → Ra+b for all a, b ∈ A. A
morphism of A-graded rings is a ring homomorphism whose underlying homomorphism of abelian
groups is A-graded.

Explicitly, given an A-graded ring R and homogeneous elements x, y ∈ R, we must have
|xy| = |x| + |y|. For example, given some field k, the ring R = k[x, y] is Z2-graded, where given
(n,m) ∈ Z2, Rn,m is the subgroup of those monomials of the form axnym for some a ∈ k.

Definition B.4. Let R be an A-graded ring. A left A-graded R-module M is a left R-module
M such that M is an A-graded abelian group and the action map R ×M → M restricts to a
map Ra ×Mb →Ma+b for all a, b ∈ A. Right A-graded R-modules are defined similarly. Finally,
an A-graded R-bimodule is an A-graded abelian group M which has the structure of both an
A-graded left and right R-module such that given r, s ∈ R and m ∈M , r · (m · s) = (r ·m) · s.

Morphisms between A-graded R-modules are precisely R-module homomorphisms whose un-
derlying group homomorphisms are A-graded. We writeR-ModA for the category of left A-graded
R-modules and ModA-R for the category of right A-graded R-modules.

Remark B.5. It is straightforward to see that an A-graded abelian group is equivalently an
A-graded Z-module, where here we are considering Z as an A-graded ring concentrated in degree
0. Thus any result below about A-graded modules applies equally to A-graded abelian groups.

Remark B.6. We often will denote an A-graded R-module M by M∗. Given some a ∈ A, we
can define the shifted A-graded abelian group M∗+a whose bth component is Mb+a. We will also
sometimes write ΣaM to denote the shifted module M∗−a.
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Definition B.7. More generally, given two A-graded R-modules M and N and some d ∈ A, an
R-module homomorphism f : M → N is an A-graded homomorphism of degree d if it restricts
to a map Ma → Na+d for all a ∈ A. Thus, an A-graded homomorphism of degree d from M
to N is equivalently an A-graded homomorphism M∗ → N∗+d or an A-graded homomorphism
M∗−d → N . Given some a ∈ A and left (resp. right) R-modules M and N , we will write

Homd
R(M,N) = HomR(M∗, N∗+d) = HomR(M∗−d, N∗)

to denote the set of A-graded homomorphisms of degree d from M to N , and simply

HomR(M,N)

to denote the set of degree-0 A-graded homomorphisms from M to N . Clearly A-graded homo-
morphisms may be added and subtracted, so these are further abelian groups. Thus we have an
A-graded abelian group

Hom∗
R(M,N).

Unless stated otherwise, an “A-graded homomorphism” will always refer to an A-graded ho-
momorphism of degree 0.

Oftentimes when constructing A-graded rings, we do so only by defining the product of homo-
geneous elements, like so:

Lemma B.8. Suppose we have an A-graded abelian group R, a distinguished element 1 ∈ R0,
and Z-bilinear maps ma,b : Ra×Rb → Ra+b for all a, b ∈ A. Further suppose that for all x ∈ Ra,
y ∈ Rb, and z ∈ Rc, we have

ma+b,c(ma,b(x, y), z) = ma,b+c(x,mb,c(y, z)) and ma,0(x, 1) = m0,a(1, x) = x.

Then there exists a unique multiplication map m : R×R→ R which endows R with the structure
of an A-graded ring and restricts to ma,b for all a, b ∈ A.

Proof. Given r, s ∈ R, since R ∼=
⊕

a∈ARa, we may uniquely decompose r and s into homogeneous
elements as r =

∑
a∈A ra and s =

∑
a∈A sa with each ra, sa ∈ Ra such that only finitely many of

the ra’s and sa’s are nonzero. Then in order to define a distributive product R × R → R which
restricts to ma,b : Ra ×Rb → Ra+b, note we must define

r · s =

(∑
a∈A

ra

)
·

(∑
b∈A

sb

)
=
∑
a,b∈A

ra · sb =
∑
a,b∈A

ma,b(ra, sb).

Thus, we have shown uniqueness. It remains to show this product actually gives R the structure
of a ring. First we claim that the sum on the right is actually finite. Note there exists only finitely
many nonzero ra’s and sb’s, and if sb = 0 then

ma,b(ra, 0) = ma,b(ra, 0 + 0)
(∗)
= ma,b(ra, 0) +ma,b(ra, 0) =⇒ ma,b(ra, 0) = 0,

where (∗) follows from bilinearity of ma,b. A similar argument yields that ma,b(0, sb) = 0 for all
a, b ∈ A. Hence indeed ma,b(ra, sb) is zero for all but finitely many pairs (a, b) ∈ A2, as desired.
Observe that in particular

(r · s)a =
∑
b+c=a

mb,c(rb, sc) =
∑
b∈A

mb,a−b(rb, sa−b) =
∑
c∈A

ma−c,c(ra−c, sc).
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Now we claim this multiplication is associative. Given t =
∑
a∈A ta ∈ R, we have

(r · s) · t =
∑
a,b∈A

ma,b((r · s)a, tb)

=
∑
a,b∈A

ma,b

(∑
c∈A

ma−c,c(ra−c, sc), tb

)
(1)
=

∑
a,b,c∈A

ma,b(ma−c,c(ra−c, sc), tb)

(2)
=

∑
a,b,c∈A

mc,a+b−c(rc,ma−c,b(sa−c, tb))

(3)
=

∑
a,b,c∈A

ma,c(ra,mb,c−b(sb, tc−b))

(1)
=
∑
a,c∈A

ma,c

(
ra,
∑
b∈A

mb,c−b(sb, tc−b)

)
=
∑
a,c∈A

ma,c(ra, (s · t)c) = r · (s · t),

where each occurrence of (1) follows by bilinearity of the ma,b’s, each occurrence of (2) is asso-
ciativity of the ma,b’s, and (3) is obtained by re-indexing by re-defining a := c, b := a − c, and
c := a+ b− c. Next, we wish to show that the distinguished element 1 ∈ R0 is a unit with respect
to this multiplication. Indeed, we have

1 · r (1)
=
∑
a∈A

m0,a(1, ra)
(2)
=
∑
a∈A

ra = r and r · 1 (1)
=
∑
a∈A

ma,0(ra, 1)
(2)
=
∑
a∈A

ra = r,

where (1) follows by the fact that ma,b(0,−) = ma,b(−, 0) = 0, which we have shown above, and
(2) follows by unitality of the m0,a’s and m0,a’s, respectively. Finally, we wish to show that this
product is distributive. Indeed, we have

r · (s+ t) =
∑
a,b∈A

ma,b(ra, (s+ t)b)

=
∑
a,b∈A

ma,b(ra, sb + tb)

(∗)
=
∑
a,b∈A

ma,b(ra, sb) +
∑
a,b∈A

ma,b(ra, tb) = (r · s) + (r · t),

where (∗) follows by bilinearity of ma,b. An entirely analagous argument yields that (r + s) · t =
(r · t) + (s · t). □

Similarly, when defining A-graded modules, we will only define the action maps for homoge-
neous elements:

Lemma B.9. Let R be an A-graded ring, M an A-graded abelian group, and suppose there exists
Z-bilinear maps κa,b : Ra ×Mb → Ma+b for all a, b ∈ A. Further suppose that for all r ∈ Ra,
r′ ∈ Rb, and m ∈Mc that

κa+b,c(r · r′,m) = κa,b+c(r, κb,c(r
′,m)) and κ0,c(1,m) = m.

Then there is a unique map κ : R×M →M which endows M with the structure of a left A-graded
R-module and restricts to κa,b for all a, b ∈ A.
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On the other hand, suppose there exists Z-bilinear maps κa,b :Ma×Rb →Ma+b for all a, b ∈ A.
Further suppose that for all r ∈ Ra, r

′ ∈ Rb, and m ∈Mc that

κc,a+b(m, r · r′) = κc+a,b(κc,a(m, r), r
′) and κc,0(m, 1) = m.

Then there is a unique map κ : M × R → M which endows M with the structure of a right
A-graded R-module and restricts to κa,b for all a, b ∈ A.

Finally, if we have maps λa,b : Ra ×Mb →Ma+b and ρa,b :Ma ×Rb →Ma+b satisfying all of
the above conditions, and if we further have that

λa,b+c(r, ρb,c(x, s)) = ρa+b,c(λa,b(r, x), s)

for all r ∈ Ra, x ∈Mb, and s ∈ Rc, then the left and right A-graded R-module structures induced
on M by the λ’s and ρ’s give M the structure of an A-graded R-bimodule.

Proof. Checking this all is straightforward albeit tedious; we leave the proof as an exercise for
the reader. □

When working with A-graded rings and modules, we will often freely use the above propositions
without comment.

Lemma B.10. Let R be an A-graded ring, and let M be an A-graded left (resp. right) R-module.
Then for all d ∈ A, the evaluation map

ev1 : Homd
R(R,M) →Md

φ 7→ φ(1)

is an isomorphism of abelian groups.

Proof. We consider the case thatM is a left A-graded R-module, as showing it whenM is a right
module is entirely analagous. First of all, this map is clearly a homomorphism, as given degree d
A-graded homomorphisms φ,ψ : R→M , we have

ev1(φ+ ψ) = (φ+ ψ)(1) = φ(1) + ψ(1) = ev1(φ) + ev1(ψ).

Now, to see it is surjective, let m ∈ Md, and define φm : R → M to send r 7→ r ·m. First of all,
φm is a module homomorphism, as given r, s ∈ R,

φm(r + s) = (r + s) ·m = r ·m+ s ·m = φm(r) + φm(s) and φm(r · s) = r · s ·m = r · φm(s).

Furthermore, it is clearly A-graded of degree d, as given a homogeneous element r ∈ Ra for some
a ∈ A, we have φm(r) = r ·m ∈ Ra+d, since m is homogeneous of degree d. Finally, clearly

ev1(φm) = φm(1) = 1 ·m = m,

so indeed ev1 is surjective. On the other hand, to see it is injective, suppose we are given
φ,ψ ∈ Homd

R(R,M) such that φ(1) = ψ(1). Then given r ∈ R, we must have

φ(r) = φ(r · 1) = r · φ(1) = r · ψ(1) = ψ(r · 1) = ψ(r),

so φ and ψ are exactly the same map. Thus, ev1 is injective, as desired. □

B.2. Tensor products of A-graded modules.

Lemma B.11. Given an A-graded ring R and two left (resp. right) A-graded R-modules M and
N , their direct sum M ⊕N is naturally a left (resp. right) A-graded R-module by defining

(M ⊕N)a :=Ma ⊕Na.

Proof. The canonical map
⊕

a∈A(Ma ⊕Na) →M ⊕N factors as⊕
a∈A

(Ma ⊕Na)
∼=−→
⊕
a∈A

Ma ⊕
⊕
a∈A

Na
∼=−→M ⊕N. □



TENSOR TRIANGULATED CATEGORIES WITH SUB-PICARD GRADING 83

Recall that given a ring R, a left R-module M , a right R-module N , and an abelian group A,
an R-balanced map φ :M ×N → B is one which satisifies

φ(m,n+ n′) = φ(m,n) + φ(m,n′)

φ(m+m′, n) = φ(m,n) + φ(m′, n)

φ(m · r, n) = φ(m, r · n)

for allm,m′ ∈M , n, n′ ∈ N , and r ∈ R. Then the tensor productM⊗RN is the universal abelian
group equipped with an R-balanced map ⊗ : M × N → M ⊗R N such that for every abelian
group B and every R-balanced map φ : M × N → B, there is a unique group homomorphism

φ̃ :M ⊗R N → B such that f̃ ◦ ⊗ = f . We call elements in the image of ⊗ :M ×N →M ⊗R N
pure tensors. It is a standard fact that M ⊗R N is generated as an abelian group by its pure
tensors.

Definition B.12. Suppose we have a right A-graded R-module M , a left A-graded R-module
N , and an A-graded abelian group B. Then an A-graded R-balanced map φ :M ×N → B is an
R-balanced map which restricts to Ma ×Nb → Ba+b for all a, b ∈ A.

Proposition B.13. Suppose we have a right A-graded R-moduleM and a left A-graded R-module
N . Then the tensor product

M ⊗R N
naturally inherits the structure of an A-graded abelian group by defining (M ⊗R N)a to be the
subgroup generated by homogeneous pure tensors, i.e., those elements m ⊗ n with m ∈ Mb and
n ∈ Nc such that b + c = a. Furthermore, if either M (resp. N) is an A-graded bimodule, then
this decomposition makes M ⊗R N into a left (resp. right) A-graded R-module. In particular, if
both M and N are R-bimodules, then M ⊗R N is an A-graded R-bimodule.

Proof. By definition, since M and N are A-graded abelian groups, they are generated (as abelian
groups) by their homogeneous elements. Thus it follows that M ⊗R N is generated by its homo-
geneous pure tensors, as defined above. Now, given a homogeneous pure tensor m⊗n inM⊗RN ,
it is clear that defining its degree by the formula |m⊗ n| := |m|+ |n| is perfectly well-defined, as
given homogeneous elements m ∈M , n ∈ N , and r ∈ R we have that

|(m · r)⊗ n| = |m · r|+ |n| = |m|+ |r|+ |n| = |m|+ |r · n| = |m⊗ (r · n)|.

Thus, we may define (M ⊗R N)a to be the subgroup of M ⊗R N generated by those pure homo-
geneous tensors of degree a. Now, consider the map

Ψ :M ×N →
⊕
a∈A

(M ⊗R N)a

which takes a pair (m,n) =
∑
a∈A(ma, na) to the element Ψ(m,n) whose ath component is

(Ψ(m,n))a :=
∑
b+c=a

mb ⊗ nc.

It is straightforward to see that this map is R-balanced, in the sense that it is additive in each
argument and Ψ(m · r, n) = Ψ(m, r · n) for all m ∈M , n ∈ N , and r ∈ R. Thus by the universal

property ofM⊗RN , we get a homomorphism of abelian groups Ψ̃ :M⊗RN →
⊕

a∈A(M⊗RN)a
lifting Ψ along the canonical map M ×N →M ⊗R N . Now, also consider the canonical map

Φ :
⊕
a∈A

(M ⊗R N)a →M ⊗R N.

We would like to show Ψ̃ and Φ are inverses of eah other. Since Ψ̃ and Φ are both homomorphisms,
it suffices to show this on generators. Letm⊗n be a homogeneous pure tensor withm = ma ∈Ma
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and n = nb ∈ Nb. Then we have

Φ(Ψ̃(m⊗ n)) = Φ

(⊕
a∈A

∑
b+c=a

mb ⊗ nc

)
(∗)
= Φ(m⊗ n) = m⊗ n,

and

Ψ̃(Φ(m⊗ n)) = Ψ̃(m⊗ n) =
⊕
a∈A

∑
b+c=a

mb ⊗ nc
(∗)
= m⊗ n,

where both occurrences of (∗) follow by the fact that mb ⊗ nc = 0 unless b = c = a, in which
case ma ⊗ na = m⊗ n. Thus since Φ is an isomorphism, M ⊗R N is indeed an A-graded abelian
group, as desired.

Now, suppose that M is an A-graded R-bimodule, so there exists left and right A-graded
actions of R on M such that given r, s ∈ R and m ∈ M we have r · (m · s) = (r ·m) · s. Then
we would like to show that given a left A-graded R-module N that M ⊗R N is canonically a left
A-graded R-module. Indeed, define the action of R on M ⊗R N on pure tensors by the formula

r · (m⊗ n) = (r ·m)⊗ n.

First of all, clearly this map is A-graded, as if r ∈ Ra, m ∈Mb, and n ∈ Nc then (r ·m)⊗ n, by
definition, has degree |r ·m|+ |n| = |r|+ |m|+ |n| (the last equality follows since the left action of
R on M is A-graded). In order to show the above map defines a left module structure, it suffices
to show that given pure tensors m⊗ n,m′ ⊗ n′ ∈M ⊗R N and elements r, r′ ∈ R that

(1) r · (m⊗ n+m′ ⊗ n′) = r · (m⊗ n) + r · (m′ ⊗ n′),
(2) (r + r′) · (m⊗ n) = r · (m⊗ n) + r′ · (m′ ⊗ n′),
(3) (rr′) · (m⊗ n) = r · (r′ · (m⊗ n)), and
(4) 1 · (m⊗ n) = m⊗ n.

Axiom (1) holds by definition. To see (2), note that by the fact that R acts on M on the left that

(r + r′) · (m⊗ n) = ((r + r′) ·m)⊗ n = (r ·m+ r′ ·m)⊗ n = r ·m⊗ n+ r′ ·m⊗ n.

That (3) and (4) hold follows similarly by the fact that (rr′) ·m = r · (r′ ·m) and 1 ·m = m.
Conversely, if N is an A-graded R-bimodule, then showing M ⊗R N is canonically a right

A-graded R-module via the rule

(m⊗ n) · r = m⊗ (n · r)

is entirely analagous.
Finally, if both M and N are R-bimodules, then by what we have shown, M ⊗R N is both a

left and right R-module. To see these coincide to give M ⊗R N an R-bimodule structure, note
that given m ∈M , n ∈ N , and r, r′ ∈ R that

(r · (m⊗ n)) · r′ = ((r ·m)⊗ n) · r′ = (r ·m)⊗ (n · r′) = r · (m⊗ (n · r′)) = r · ((m⊗ n) · r′). □

Lemma B.14. Let R be an A-graded ring, B an A-graded abelian group, M a right A-graded R-
module, and N a left A-graded R-module. Further suppose we are given a map φa,b :Ma×Nb →
Ba+b for all a, b ∈ A which commutes with addition in each argument, and such that for all
m ∈Ma, n ∈ Nb, and r ∈ Rc that

φa+b,c(m · r, n) = φa,b+c(m, r · n).

Then there is a unique A-graded R-balanced map φ : M ×N → B which restricts to φa,b for all
a, b ∈ A, and furthermore, the induced homorphism φ̃ : M ⊗R N → B is an A-graded homomor-
phism of abelian groups.

Proof. Checking this is straightforward, we leave it as an exercise for the reader. □
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B.3. A-graded submodules and quotient modules. In what follows, fix an A-graded ring
R. We will simply say “A-graded R-module” when we are freely considering either left or right
A-graded R-modules.

Recall that given a ring R, an R-module P is projective if, for all diagrams of R-module
homomorphisms of the form

M

P N
f

g

with g an epimorphism, there exists a lift h : P →M satisfying g ◦ h = f

M

P N
f

gh

(Note h is not required to be unique.)

Definition B.15. Let R be an A-graded ring, and let P be an A-graded R-module. Then P is a
graded projective module if, for all diagrams of A-graded R-module homomorphisms of the form

M

P N
f

g

with g an epimorphism, there exists an A-graded homomorphism h : P →M satisfying g ◦h = f .

M

P N
f

gh

(Note h is not required to be unique.)

Definition B.16. Let M be an A-graded R-module. Then an A-graded R-submodule is an A-
graded R-module N which is a subset of M and for which the inclusion N ↪→M is an A-graded
homomorphism of R-modules. Equivalently, it is a submodule N for which the canonical map⊕

a∈A
N ∩Ma → N

is an isomorphism.

Lemma B.17. Let M be an A-graded R-module. Then an R-submodule N ≤M is an A-graded
submodule if and only if it is generated as an R-module by homogeneous elements of M .

Proof. If N ≤ M is a A-graded submodule, it is generated by the set of all its homogeneous
elements, which are also homogeneous elements in M , by definition.

Conversely, suppose N ≤ M is a submodule which is generated by homogeneous elements of
M . Then define Na := N ∩Ma, and consider the canonical map

Φ :
⊕
a∈A

Na → N.
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First of all, it is surjective, as each generator of N belongs to some Na, by definition. To see it is
injective, consider the following commutative diagram:⊕

a∈ANa
⊕

a∈AMa

N M

∼=Φ

Since Φ composes with an injection to get an injection, clearly Φ must be injective itself. We
have the desired result. □

Proposition B.18. Given two left (resp. right) A-graded R-modules M and N and an A-graded
R-module homomorphism φ : M → N (of possibly nonzero degree), the kernel and images of φ
are A-graded submodules of M and N , respectively.

Proof. First recall that a degree d A-graded homomorphism M → N is simply an A-graded
homomorphism M∗ → N∗+d, so it suffices to consider the case φ is of degree 0. Next, note that
since the forgetful functor from R-modules to abelian groups preserves kernels and images, it
suffices to consider the case that φ is a homomorphism of A-graded abelian groups. Finally, by
Lemma B.17, it suffices to show that kerφ and imφ are generated by homogeneous elements of
M and N , respectively.

Note that by the universal property of the coproduct in Ab, the data of an A-graded homo-
morphism of abelian groups φ :M → N is precisely the data of an A-indexed collection of abelian
group homomorphisms φa :Ma → Na, in which case the following diagram commutes:⊕

aMa

⊕
aNa

M N

⊕
a φa

∼=
φ

∼=

Finally, the desired result follows by the purely formal fact that taking images and kernels com-
mutes with arbitrary direct sums. □

Proposition B.19. Given two left (resp. right) A-graded R-modules M and N , an A-graded
submodule K ≤ N , and an A-graded R-module homomorphism φ : M → N (of possibly nonzero
degree), the submodule φ−1(K) of M is A-graded.

Proof. Recall that a degree d A-graded homomorphismM → N is simply an A-graded homomor-
phism M∗ → N∗+d, so it suffices to consider the case φ is of degree 0. Now, let x ∈ L := φ−1(K).
As an element of M , we may uniquely write x =

∑
a∈A xa where each xa ∈ Ma. Similarly, if we

set y := φ(x), then we may uniquely write y =
∑
a∈A ya where each ya ∈ Na. Then since K is

an A-graded submodule of N and y ∈ K, by definition, we have that ya ∈ K for each a. Finally,
note that ∑

a∈A
ya = y = φ(x) =

∑
a∈A

φ(xa),

so that φ(xa) = ya ∈ K for all a ∈ A, so that xa ∈ L for all a ∈ A. Thus we have shown that
each element in L can be written as a sum of homogeneous elements in M , as desired. □

Proposition B.20. Given an A-graded R-module M and an A-graded subgroup N ≤ M , the
quotient M/N is canonically A-graded by defining (M/N)a to be the subgroup generated by
cosets represented by homogeneous elements of degree a in M . Furthermore, the canonical maps
Ma/Na → (M/N)a taking a coset m+Na to m+N are isomorphisms.
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Proof. Consider the canonical map

Φ :
⊕
a

(M/N)a →M/N.

First of all, surjectivity of Φ follows by commutativity of the following diagram:⊕
aMa M

⊕
a(M/N)a M/N

∼=

Φ

where the vertical left map sends a generator m ∈ Ma to the coset m +N in (M/N)a ⊆ M/N .
To see Φ is injective, suppose we are given some element (ma +N)a∈A in

⊕
a(M/C)a such that∑

a∈A(ma + N) = 0 in M/N . Thus
∑
a∈Ama ∈ N , and since N is A-graded this implies that

each ma belongs to N ∩Ma = Na, so that in particular ma +N is zero in (M/N)a ⊆ M/N , so
that (ma +N)a∈A = 0 in

⊕
a(M/N)a, as desired.

It remains to show that the canonical map

φa :Ma/Na → (M/N)a

is an isomorphism. It is clearly surjective, as (M/N)a is generated by elements m + N for
m ∈Ma, and these elements make up precisely the image of φa. Thus φa hits every generator of
(M/N)a, so φa is surjective. On the other hand, suppose we are given some m ∈ Ma such that
φ(m + Na) = m + N = 0. Thus m ∈ N , and m ∈ Ma, so that m ∈ Ma ∩ N = Na, meaning
m+Na = 0 in Ma/Na, as desired. □

B.4. Pushouts of A-graded anticommutative rings. The goal of this section is to show that
given an A-graded anticommutative ring R (Definition 4.5) that the category R-GrCAlg(A) of
A-graded anticommutative R-algebras (Definition 4.6) has pushouts and binary coproducts, which
are formed by taking the tensor product of the underlying A-graded modules and endowing it with
an anticommutative product. The proofs here are entirely analagous to showing that the standard
category of anticommutative Z-graded rings has pushouts, so rather than giving complete proofs
in this section we simply outline what needs to be shown, and leave it to the reader to fill in the
details.

Proposition B.21. Suppose we have an A-graded anticommutative ring R (Definition 4.5) and
two morphisms f : (B,φB) → (C,φC) and g : (B,φB) → (D,φD) in R-GrCAlg(A) (Defini-
tion 4.6). Then f and g make C and D both B-bimodules, respectively,7 so we may form their
tensor product C⊗BD, which is itself an A-graded B-bimodule (Proposition B.13). Then C⊗BD
canonically inherits the structure of an A-graded R-commutative ring with unit 1C ⊗ 1D via a
product

(C ⊗B D)× (C ⊗B D) → C ⊗B D
which sends a pair (x⊗ y, x′ ⊗ y′) of homogeneous pure tensors to the element

φB(θ|x|,|y′|) · (xx′ ⊗ yy′) = φC(θ|x|,|y′|)xx
′ ⊗ yy′,

(where here · denotes the left module action of B on C ⊗B D), and with structure map

φ : R→ C ⊗B D
r 7→ φB(r) · (1C ⊗ 1D) = (φC(r)⊗ 1D) = (1C ⊗ φD(r)).

7Explicitly, it is a standard fact that given a ring homomorphism φ : R → S that S canonically becomes an
R-bimodule with left action r · s := φ(r)s and right action s · r := sφ(r), so that in particular if φ is an A-graded
homomorphism of A-graded rings, then φ makes S an A-graded R-bimodule.
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Proof sketch. We simply lay out everything that needs to be shown, and we leave it to the reader to
fill in the details. First to show that the indicated product is actually well-defined and distributive,
by Lemma B.14 it suffices to show that for all homogeneous c, c′, c′′ ∈ C, d, d′, d′′ ∈ D, and b ∈ B
with |c′| = |c′′| and |d′| = |d′′|, that

φB(θ|d|,|c′+c′′|) · (c(c′ + c′′)⊗ dd′) = φB(θ|d|,|c′|) · (cc′ ⊗ dd′) + φB(θ|d|,|c′′|) · (cc′′ ⊗ dd′)

φB(θ|d|,|c′|) · (cc′ ⊗ d(d′ + d′′)) = φB(θ|d|,|c′|) · (cc′ ⊗ dd′) + φB(θ|d|,|c′|) · (cc′ ⊗ dd′′)

φB(θ|d|,|c′·b|) · (c(c′ · b)⊗ dd′) = φB(θ|d|,|c′|) · (cc′ ⊗ d(b · d′))
φB(θ|d′|,|c|) · ((c′ + c′′)c⊗ d′d) = φB(θ|d′|,|c|) · (c′c⊗ d′d) + φB(θ|d′|,|c|) · (c′′c⊗ d′d)

φB(θ|d′+d′′|,|c|) · (c′c⊗ (d′ + d′′)d) = φB(θ|d′|,|c|) · (c′c⊗ d′d) + φB(θ|d′′|,|c|) · (c′c⊗ d′′d)

φB(θ|d′|,|c|)((c
′ · b)c⊗ d′d) = φB(θ|c|,|b·d′|) · (c′c⊗ (b · d′)d),

where each occurrence of · denotes the left or right module action of B. These tell us that for
all x ∈ C ⊗B D that the maps C ⊗B D → C ⊗B D sending y 7→ xy and y 7→ yx are well-defined
A-graded homomorphisms of abelian groups, so we have a distributive product (x, y) 7→ xy. Then
to show that this product makes C ⊗B D an A-graded ring, we need to show it is associative
and unital. By Lemma B.8, it suffices to show that for all homogeneous x, y, z ∈ C ⊗B D that
(xy)z = x(yz) and x(1C ⊗ 1D) = x = (1C ⊗ 1D)x. By distributivity, it further suffices to consider
the case that x, y, and z are homogeneous pure tensors in C ⊗B D, i.e., it suffices to show that
for all homogeneous c, c′, c′′ ∈ C and d, d′, d′′ ∈ D that

((c⊗ d)(c′ ⊗ d′))(c′′ ⊗ d′′) = (c⊗ d)((c′ ⊗ d′)(c′′ ⊗ d′′))

and
(c⊗ d)(1C ⊗ 1D) = (c⊗ d) = (1C ⊗ 1D)(c⊗ d).

Thus, proving these hold will show C ⊗B D has the structure of an A-graded ring, as desired.
Now, we wish to show that the given map φ : R → C ⊗B D is a ring homomorphism. Clearly it
sends 1 to 1C ⊗ 1D, and again by linearity, it suffices to show that given homogeneous r, s ∈ R
that

φ(r + s) = φB(r + s)(1C ⊗ 1D) = φB(r)(1C ⊗ 1D) + φB(s)(1C ⊗ 1D) = φ(r) + φ(s)

and
φ(rs) = φB(rs)(1C ⊗ 1D) = (φB(r)(1C ⊗ 1D))(φB(s)(1C ⊗ 1D)) = φ(r)φ(s).

Finally, we need to show that C ⊗B D satisfies the graded commutativity condition, for which
again by linearity it suffices to show that given homogeneous c, c′ ∈ C and d, d′ ∈ D that

(c⊗ d)(c′ ⊗ d′) = φ(θ|c⊗d|,|c′⊗d′|)(c
′ ⊗ d′)(c⊗ d) = φ(θ|c|+|d|,|c′|+|d′|)(c

′ ⊗ d′)(c⊗ d).

Showing all of these is relatively straightforward. □

Proposition B.22. Given an A-graded anticommutative ring (R, θ), the category R-GrCAlg(A)
has pushouts, where given f : (B,φB) → (C,φC) and g : (B,φB) → (D,φD), their pushout is
the object (C⊗BD,φ) constructed in Proposition B.21, along with the canonical maps (C,φC) →
(C ⊗B D,φ) sending c 7→ c⊗ 1D and (D,φD) → (C ⊗B D,φ) sending d 7→ 1C ⊗ d. In particular,
since (R, idR) is initial, R-GrCAlg(A) has binary coproducts.

Proof sketch. First, we need to show that the given maps iC : (C,φC) → (C ⊗B D,φ) and
iD : (D,φD) → (C ⊗B D,φ) are actually morphisms in R-GrCAlg(A), i.e., that they are ring
homomorphisms and that the following diagram commutes:

R

C C ⊗B D D
iC iD

φC φDφ



TENSOR TRIANGULATED CATEGORIES WITH SUB-PICARD GRADING 89

Showing this is entirely straightforward. Furthermore, iC and iD clearly make the following
diagram commute:

B D

C C ⊗B D

g

iDf

iC

It remains to show that iC and iD are the universal such arrows. Suppose we have some object
(E,φE) in R-GrCAlg(A) and a commuting diagram

B D

C E

f

g

h

k

of morphisms in R-GrCAlg(A). Then we’d like to show there exists a unique morphism ℓ :
C ⊗B D → E in R-GrCAlg(A) which makes the following diagram commute:

B D

C C ⊗B D

E

f

g

h

k
iC

iD

ℓ

First we show uniqueness. Supposing such an arrow ℓ existed, given elements c ∈ C and d ∈ D,
we must have

ℓ(c⊗ d) = ℓ((c⊗ 1D)(1C ⊗ d)) = ℓ(c⊗ 1D)ℓ(1C ⊗ d) = ℓ(iC(c))ℓ(iD(d)) = h(c)k(d).

Since pure tensors generate C⊗BD, we have uniquely determined ℓ, and clearly it makes the above
diagram commute. Now, it remains to show that as defined ℓ is a morphism in R-GrCAlg(A),
i.e., that it is an A-graded ring homomorphism and that the following diagram commutes:

R

C ⊗B D E

φ

ℓ

φE

This is all entirely straightforward to show. □

Appendix C. Monoid objects

In this appendix, we fix a symmetric monoidal category (C,⊗, S) with left unitor, right unitor,
associator, and symmetry isomorphisms λ, ρ, α, and τ , respectively.

C.1. Monoid objects in a symmetric monoidal category.

Definition C.1. A monoid object (E,µ, e) is an object E in C along with a multiplication
morphism µ : E ⊗E → E and a unit map e : S → E such that the following diagrams commute:

E ⊗ S E ⊗ E S ⊗ E (E ⊗ E)⊗ E E ⊗ E

E E ⊗ (E ⊗ E) E ⊗ E E

µ

e⊗EE⊗e

λE
ρE

α

E⊗µ µ

µ⊗E

µ
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The first diagram expresses unitality, while the second expressed associativity. If in addition the
following diagram commutes,

E ⊗ E E ⊗ E

E

τ

µµ

then we say (E,µ, e) is a commutative monoid object.

Example C.2. The object S is a monoid object, with multiplication map ρS = λS : S ⊗ S → S
and unit idS : S → S.

Definition C.3. Given two monoid objects (E1, µ1, e1) and (E2, µ2, e2) in a symmetric monoidal
category (C,⊗, S), a monoid homomorphism from E1 to E2 is a morphism f : E1 → E2 in C such
that the following diagrams commute:

E1 ⊗ E1 E2 ⊗ E2 S

E1 E2 E1 E2

f⊗f

µ2µ1

f

e1

f

e2

It is straightforward to show that idE1
is a homomorphism of monoid objects from E1 to itself,

and that the composition of monoid homomorphisms is still a monoid homomorphism. Thus, we
have categories MonC and CMonC of monoid objects and commutative monoid objects in C,
respectively, with monoid homomorphisms between them.

Lemma C.4. Given two monoid objects (E1, µ1, e1) and (E2, µ2, e2) in a symmetric monoidal
category (C,⊗, S), their tensor product E1 ⊗ E2 canonically becomes a monoid object in C with
unit map

e : S
∼=−→ S ⊗ S

e1⊗e2−−−−→ E1 ⊗ E2

and multiplication map

µ : E1 ⊗ E2 ⊗ E1 ⊗ E2
E1⊗τ⊗E2−−−−−−→ E1 ⊗ E1 ⊗ E2 ⊗ E2

µ1⊗µ2−−−−→ E1 ⊗ E2

(where here we are suppressing the associators from the notation). If in addition (E1, µ1, e1) and
(E2, µ2, e2) are commutative monoid objects, then (E1 ⊗ E2, µ, e) is as well.

Proof. Due to the size of the diagrams involved, we leave this as an exercise for the reader. It is
entirely straightforward. □

Lemma C.5. Given monoid objects (Ei, µi, ei) for i = 1, 2, 3 in a symmetric monoidal category

C, the associator (E1 ⊗ E2) ⊗ E3

∼=−→ E1 ⊗ (E2 ⊗ E3) is an isomorphism of monoid objects. In
other words, up to associativity, given a collection of monoid objects E1, . . . , En in C, there is no
ambiguity when talking about their tensor product E1 ⊗ · · · ⊗ En as a monoid object.

Proof. Clearly, up to associativity, (E1 ⊗ E2)⊗ E3 and E1 ⊗ (E2 ⊗ E3) have the same unit map

S
e1⊗e2⊗e3−−−−−−→ E1 ⊗ E2 ⊗ E3. Thus, it remains to show that they have the same product map, up

to associativity. To see this, consider the following diagram, where we’ve passed to a symmetric
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strict monoidal category:

E1 ⊗ (E2 ⊗ E3)⊗ E1 ⊗ (E2 ⊗ E3) (E1 ⊗ E2)⊗ E3 ⊗ (E1 ⊗ E2)⊗ E3

E1 ⊗ E1 ⊗ E2 ⊗ E3 ⊗ E2 ⊗ E3 E1 ⊗ E2 ⊗ E1 ⊗ E2 ⊗ E3 ⊗ E3

E1 ⊗ E2 ⊗ E2 ⊗ E3 ⊗ E3 E1 ⊗ E1 ⊗ E2 ⊗ E2 ⊗ E3 ⊗ E3 E1 ⊗ E1 ⊗ E2 ⊗ E2 ⊗ E3

E1 ⊗ E2 ⊗ E3 E1 ⊗ E2 ⊗ E3

E1⊗τE2⊗E3,E1
⊗E2⊗E3

µ1⊗E2⊗τ⊗E3

E1⊗µ2⊗µ3

E1⊗τ⊗E2⊗µ3

µ1⊗µ2⊗E3

α

E1⊗E1⊗E2⊗τ⊗E3 E1⊗τ⊗E2⊗E3⊗E3

E1⊗E2⊗E2⊗E2⊗µ3µ1⊗E2⊗E2⊗E3⊗E3

α

E1⊗E2⊗τE3,E1⊗E2
⊗E3

µ1⊗µ2⊗µ3 µ1⊗µ2⊗µ3

The top pentagonal region commutes by coherence for the τ ’s in a symmetric monoidal category.
The bottom triangle commutes by definition. The remaining four triangles commute by functo-
riality of −⊗−. On the left is the product for E1 ⊗ (E2 ⊗E3), while on the right is the product
for (E1 ⊗ E2)⊗ E3. Thus they are equal up to associativity, as desired. □

Lemma C.6. Let (E,µ, e) be a monoid object in SH. Then the map e : S → E is a monoid
homomorphism. Furthermore, if E is a commutative monoid object, then µ : E ⊗ E → E is
also a monoid object homomorphism. (Here S and E ⊗E are considered to be monoid objects by
Example C.2 and Lemma C.4, respectively.)

Proof. To see e is a monoid homomorphism, consider the following diagrams:

S S ⊗ S E ⊗ E

S ⊗ E

S E S E

e⊗e

µ

S⊗e

ρS=λS

e⊗E

λE

e
e

e

The left diagram commutes by definition. The top region in the right diagram commutes by
functoriality of − ⊗ −. The right region commutes by unitality of µ. The left region commutes
by naturality of λ. Thus, indeed e : S → E is a monoid object homomorphism.

Now, to see µ is a monoid object homomorphism when (E,µ, e) is a commutative monoid
object, first consider the following diagram:

S

E

E ⊗ E E

e⊗e

µ

e

e

E⊗e
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The left region commutes by functoriality of −⊗−, the right region commutes by definition, and
the bottom region commutes by unitality of µ. Now, consider the following diagram:

E1 ⊗ E2 ⊗ E3 ⊗ E4 E12 ⊗ E34

E1 ⊗ E23 ⊗ E4 E12 ⊗ E3 ⊗ E4

E1 ⊗ E3 ⊗ E2 ⊗ E4 E13 ⊗ E2 ⊗ E4 E123 ⊗ E4

E13 ⊗ E24 E1234

µ⊗µ

µ

E⊗τ⊗E

µ⊗µ
µ

E⊗µ⊗E

E⊗µ⊗E

µ⊗E

µ

µ⊗E⊗E
E⊗µ

µ⊗E
µ⊗E⊗E

E⊗µ
µ⊗E

Here we have numbered the E’s to make it clearer what’s going on. The top and bottom left
regions commute by functoriality of − ⊗ −. The top left region commutes by commutativity of
µ. Every other region commutes by associativity of µ. Thus, we’ve shown µ is a monoid object
homomorphism, as desired. □

Lemma C.7. Suppose we have some monoid object (E,µ, e) in C and some homomorphism of
monoid objects f : (E1, µ1, e1) → (E2, µ2, e2) in MonC. Then E ⊗ f : E ⊗ E1 → E ⊗ E2 and
f ⊗ E : E1 ⊗ E → E2 ⊗ E are monoid homomorphisms, where here we are considering E ⊗ E1,
E ⊗ E2, E1 ⊗ E, and E2 ⊗ E to be monoid objects by Lemma C.4.

Proof. We will show that E⊗f is a monoid object homomorphism, as showing f ⊗E is a monoid
homomorphism is entirely analagous. First consider the following diagram:

E ⊗ E1 ⊗ E ⊗ E1 E ⊗ E2 ⊗ E ⊗ E2

E ⊗ E ⊗ E1 ⊗ E1 E ⊗ E ⊗ E2 ⊗ E2

E ⊗ E1 ⊗ E1 E ⊗ E2 ⊗ E2

E ⊗ E1 E ⊗ E2

E⊗f⊗E⊗f

E⊗τ⊗E1 E⊗τ⊗E2

µ⊗µ1

E⊗f

µ⊗µ2

E⊗E⊗f⊗f

µ⊗E1⊗E2

E⊗µ1

E⊗f⊗f

E⊗µ2

µ⊗E2⊗E2

The top region commutes by naturality of τ . The bottom trapezoid commutes since f is a monoid
homomorphism. The remaining three regions commute by functoriality of −⊗−. Now, consider
the following diagram:

S

E

E ⊗ E1 E ⊗ E2

e⊗e1

E⊗f

e⊗e2

e

E⊗e1 E⊗e2

The bottom region commutes since f is a monoid homomorphism. The top two regions commute
by functoriality of − ⊗ −. Thus, we’ve shown E ⊗ f is a monoid object homomorphism, as
desired. □
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C.2. Modules over monoid objects in a symmetric monoidal category.

Definition C.8. Let (E,µ, e) be a monoid object in C. Then a (left) module object (N,κ) over
(E,µ, e) is the data of an object N in C and a morphism κ : E ⊗N → N such that the following
two diagrams commute in C:

S ⊗N E ⊗N (E ⊗ E)⊗N E ⊗N

N E ⊗ (E ⊗N) E ⊗N N

e⊗N

κ
λN

µ⊗N

κα

E⊗κ κ

Definition C.9. Let (E,µ, e) be a monoid object in C, and suppose we have two (left) module
objects (N,κ) and (N ′, κ′) over (E,µ, e). Then a morphism f : N → N ′ is a (left) E-module
homomorphism if the following diagram commutes in C:

E ⊗N E ⊗N ′

N N ′

E⊗f

κ

f

κ′

Definition C.10. Given a monoid object (E,µ, e) in C, we write E-Mod to denote the category
of (left) module objects over E and E-module homomorphisms between them. We denote the
homset in E-Mod by

HomE-Mod(M,N), or simply HomE(M,N).

For our purposes, we will only consider left module objects, so we will usually drop the quanit-
fier “left” and just refer to them as “module objects”.

Lemma C.11. Let (E,µ, e) be a monoid object in C and let (N,κ) be an E module object. Then

given some object X in C and an isomorphism ϕ : N
∼=−→ X, X inherits the structure of an

E-module via the action map

κϕ : E ⊗X
E⊗ϕ−1

−−−−−→ E ⊗N
κ−→ N

ϕ−→ X.

Proof. We need to show the two coherence diagrams in Definition C.8 commute. To see the
former commutes, consider the following diagram:

X E ⊗X

N E ⊗N

N

X

e⊗X

E⊗ϕ−1

κ

ϕ

e⊗N

ϕ−1

The top trapezoid commutes by functoriality of − ⊗ −. The middle small triangle commutes
by unitality of κ. The remaining region commutes by definition. To see the second coherence
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diagram commutes, consider the following diagram:

E ⊗ E ⊗X E ⊗X

E ⊗ E ⊗N E ⊗N

E ⊗N N

E ⊗X E ⊗N N X

µ⊗X

E⊗ϕ−1

κ

ϕ

E⊗E⊗ϕ−1

E⊗κ

E⊗ϕ

E⊗ϕ1− κ ϕ

µ⊗N

κ

The top rectangle commutes by functoriality of − ⊗ −. The middle rectangle commutes by
coherence for κ. The bottom two regions commute by definition. □

Proposition C.12. Given a monoid object (E,µ, e) in C, the forgetful functor E-Mod → C has
a left adjoint C → E-Mod sending an object X in C to (E⊗X,κX) where κX is the composition

E ⊗ (E ⊗X)
α−1

−−→ (E ⊗ E)⊗X
µ⊗X−−−→ E ⊗X,

and sending a morphism f : X → Y to E ⊗ f : E ⊗X → E ⊗ Y .
We call this functor E⊗− : C → E-Mod the free functor, and we call E-modules in the image

of the free functor free modules.

Proof. In this proof, we work in a symmetric strict monoidal category. First, we wish to show
that E ⊗− : C → E-Mod as constructed is well-defined. First, to see that (X,κX) is actually a
E-module, we need to show the two diagrams in Definition C.8 commute. Indeed, consider the
following diagrams:

E ⊗X E ⊗ E ⊗X E ⊗ E ⊗ E ⊗X E ⊗ E ⊗X

E ⊗X E ⊗ E ⊗X E ⊗X

e⊗E⊗X

µ⊗X

µ⊗E⊗X

µ⊗XE⊗µ⊗X

µ⊗X

These are precisely the diagrams obtained by applying X ⊗ − to the coherence diagrams for µ,
so that they commute as desired. Now, suppose f : X → Y is a morphism in C, then we would
like to show that E ⊗ f : E ⊗X → E ⊗ Y is a morphism of E-module objects. Indeed, consider
the following diagram:

E ⊗ E ⊗X E ⊗ E ⊗ Y

E ⊗X E ⊗ Y

E⊗E⊗f

µ⊗Yµ⊗X
E⊗f

It commutes by functoriality of −⊗−, so E⊗f is indeed an E-module homomorphism as desired.
Now, in order to see that E ⊗− is left adjoint to the forgetful functor, it suffices to construct

a unit and counit for the adjunction and show they satisfy the zig-zag identities. Given X in C

and (N,κ) in E-Mod, define ηX := e ⊗X : X → E ⊗X and ε(N,κ) := κ : E ⊗ N → N . ηX is
clearly natural in X by functoriality of −⊗−, and ε(N,κ) is natural in (N,κ) by how morphisms
in E-Mod are defined. Now, to see these are actually the unit and counit of an adjunction, we
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need to show that the following diagrams commute for all X in C and (N,κ) in E-Mod:

E ⊗X E ⊗ E ⊗X E ⊗N N

E ⊗X N

E⊗ηX=E⊗e⊗X

ε(E⊗X,κX )=µ⊗X ε(N,κ)=κ

ηN=e⊗N

Commutativity of the left diagram is unitality of µ, while commutativity of the right diagram
is unitality of κ. Thus indeed E ⊗ − : C → E-Mod is a left adjoint of the forgetful functor
E-Mod → C, as desired. □

Lemma C.13. Let (E,µ, e) be a monoid object in C. Further suppose we have some object X in
C and an E-module object (N,κ), along with a commuting diagram in C

X N Xι r

Then if ℓ := ι ◦ r : N → N is an E-module homomorphism, then X is canonically an E-module
object with structure map

κX : E ⊗X
E⊗ι−−−→ E ⊗N

κ−→ N
r−→ X,

and furthermore, the maps ι : X → N and r : N → X are E-module homomorphisms.

Proof. First, in order to show (X,κX) is an E-module, we need to show the two diagrams in
Definition C.8 commute. To see the unitality diagram holds, consider the following diagram:

S ⊗X E ⊗X

S ⊗N E ⊗N

N

X X

e⊗X

E⊗ι

κ

r

λX

S⊗ι
e⊗N

λN

ι

The large left triangle commutes by naturality of λ. The top trapezoid commutes by functoriality
of −⊗−. The small middle right triangle commutes by unitality of κ. Finally, the bottom triangle
commutes by definition, since we are assuming r ◦ ι = idX . Now the right composition is κX , so
we have shown κX ◦ (e⊗X) = λX , as desired. Now, consider the following diagram:

E ⊗ E ⊗X E ⊗X

E ⊗ E ⊗N E ⊗ E ⊗N E ⊗N

E ⊗N N

E ⊗X E ⊗N N X

µ⊗X

E⊗ι

κ

r

E⊗E⊗ι

E⊗κ

E⊗r

E⊗ι κ r

E⊗E⊗ℓ

E⊗E⊗ι

E⊗κ
E⊗ℓ

µ⊗N

The top trapezoid commutes by funtoriality of −⊗−. The top left triangle commutes by functo-
riality of −⊗− and the fact that ℓ◦ ι = ι◦r ◦ ι = ι◦ idX = ι. The middle left trapezoid commutes
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by since ℓ is an E-module homomorphism, by assumption. The bottom left triangle commutes
by functoriality of − ⊗ − and the fact that ι ◦ r = ℓ. Thus, we have shown that (X,κX) is an
E-module object, as desired.

Now, it remains to show that ι : X → N and r : N → X are E-module homomorphisms. To
that end, consider the following two diagrams:

E ⊗X E ⊗N E ⊗N E ⊗X

E ⊗N E ⊗N

N N

X N N X

κ

E⊗ι

κ

r

E⊗r

r

E⊗ι

κ

r

E⊗ℓ

ℓ

κ

E⊗ι

ι

ℓ

E⊗ℓ

The trapezoids in each diagram commute since we are assuming ℓ is a E-module homomorphism.
The four triangles commute since ℓ◦ι = ι and r◦ℓ = r. Thus, we have shown that κX◦(E⊗r) = r◦κ
and κ ◦ (E ⊗ ι) = ι ◦ κX , so we indeed have that ι and r are E-module homomorphisms, as
desired. □

Proposition C.14. Suppose that C is an additive symmetric monoidal closed category. Let
(E,µ, e) be a monoid object in C, and suppose we have a family of E-module objects (Ni, κi)
indexed by some small set I. Then N :=

⊕
i∈I Ni is canonically an E-module, with action map

given by the composition

κ : E ⊗
⊕
i

Ni
∼=−→
⊕
i

(E ⊗Ni)
⊕

i κi−−−−→
⊕
i

Ni,

where the first isomorphism is given by the fact that E ⊗− preserves coproducts, since it is a left
adjoint. Furthermore, N is the coproduct of all the Ni’s in E-Mod, so that E-Mod has arbitrary
coproducts.

Proof. We need to show the action map κ makes the diagrams in Definition C.8 commute. To
see the first (unitality) diagram commutes, consider the following diagram:

⊕
iNi E ⊗

⊕
iNi

⊕
i(E ⊗Ni)

⊕
iNi

e⊗
⊕

iNi

∼=

⊕
i κi

⊕
i(e⊗Ni)

The top triangle commutes since E ⊗− preserves coproducts, as it is a left adjoint. The bottom
triangle commutes by unitality of each of the κi’s. To see the second coherence diagram commutes,
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consider the following diagram:

E ⊗ E ⊗
⊕

iNi E ⊗
⊕

iNi

E ⊗
⊕

i(E ⊗Ni)
⊕

i(E ⊗ E ⊗Ni)
⊕

i(E ⊗Ni)

E ⊗
⊕

iNi
⊕

i(E ⊗Ni)
⊕

iNi

µ⊕
⊕

iNi

E⊗∼=

E⊗
⊕

i κi

∼=
⊕

i κi

∼=

⊕
i κi

∼=

∼=
⊕

i(µ⊗Ni)

⊕
i(E⊗κi)

The bottom right square commutes by coherence for the κi’s. Every other region commutes since
− ⊗ − preserves colimits in each variable. Thus N =

⊕
iNi is indeed an E-module object, as

desired.
Now, we claim that (N,κ) is the coproduct of the (Ni, κi)’s in E-Mod. First, we need to

show that the canonical maps ιi : Ni ↪→ N are morphisms in E-Mod for all i ∈ I. To see ιi is a
homomorphism of E-module objects, consider the following diagram:

E ⊗Ni E ⊗
⊕

iNi

⊕
i(E ⊗Ni)

Ni
⊕

iNi

E⊗ιi

κi

ιi

∼=

⊕
i κi

ιE⊗Ni

The top triangle commutes by additivity of E ⊗ −. The bottom trapezoid commutes since, by
univeral property of the coproduct,

⊕
i κi is the unique arrow which makes the trapezoid commute

for all i ∈ I. Now, it remains to show that given an E-module object (N ′, κ′) and homomorphisms
fi : Ni → N ′ of E-module objects for all i ∈ I, that the unique arrow f : N → N ′ in SH satisfying
f◦ιi = fi for all i ∈ I is a homomorphism of E-module objects, so thatN is actually the coproduct
of the Ni’s. To see this, first let h :

⊕
i(E ⊗Ni) → E ⊗N ′ be the arrow determined by the maps

E ⊗Ni
E⊗fi−−−→ E ⊗N ′. Then consider the following diagram:

E ⊗
⊕

iNi E ⊗N ′

⊕
i(E ⊗Ni)

⊕
i(E ⊗N ′)

⊕
iN

′

⊕
iNi N ′

E⊗f

∼=

⊕
i κi

f

κ′

⊕
i(E⊗fi)

h

∇

⊕
i κ

′

∇⊕
i fi

The top triangle commutes by additivity of E ⊗ −. The triangle below that commutes by the
universal property of the coproduct, since it is straightforward to check that ∇◦

⊕
i(E ⊗ fi) and

h both satisfy the universal property of the colimit. The left trapezoid commutes by functoriality
of − ⊕ − and the fact that fi is a homomorphism of E-module objects for all i in I. The right
trapezoid commutes by naturality of ∇. Finally, the bottom triangle commutes by the universal
product of the coproduct, by showing that ∇ ◦

⊕
i fi in place of f also satisfies the universal

property of the colimit. Hence f is inded a homomorphism of E-module objects, as desired.
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To recap, we have shown that given a set of E-module objects {(Ni, κi)}i∈I , the inclusion maps
ιi : Ni ↪→

⊕
iNi are morphisms in E-Mod, and that given morphisms fi : (Ni, κi) → (N ′, κ′) for

all i ∈ I, the unique induced map
⊕

iNi → N ′ is a morphism in E-Mod. Thus, E-Mod does
indeed have arbitrary coproducts, and the forgetful functor E-Mod → SH preserves them. □

Proposition C.15. Suppose that C is an additive closed symmetric monoidal category, and let
(E,µ, e) be a monoid object in C. Then E-Mod is itself an additive category, so that in particular
the forgetful functor E-Mod → C and the free functor C → E-Mod (Proposition C.12) are
additive.

Proof. It is a general fact that adjoint functors between additive categories are necessarily addi-
tive. In order to show E-Mod is an additive category, it suffices to show it has finite coproducts,
that HomE-Mod(N,N

′) is an abelian group for all E-modules N and N ′, and that composition
is bilinear. We know that E-Mod has coproducts which are preserved by the forgetful functor
E-Mod → C by Proposition C.14 (which is clearly faithful). Thus, because C is Ab-enriched
and HomE-Mod(N,N

′) ⊆ C(N,N ′), it suffices to show that HomE-Mod(N,N
′) is closed under

addition and taking inverses. To see the former, let f, g : N → N ′ be E-module homomorphisms,
and consider the following diagram:

E ⊗N E ⊗ (N ⊕N) E ⊗ (N ′ ⊕N ′) E ⊗N ′

(E ⊗N)⊕ (E ⊗N) (E ⊗N ′)⊗ (E ⊗N ′)

N N ⊕N N ′ ⊕N ′ N ′

E⊗∆N E⊗(f⊕g) E⊗∇N′

κ′κ

∆E⊗N

(E⊗f)⊕(E⊗g)

∼=∼= ∇E⊗N′

∆N f⊕g ∇N′

κ⊕κ κ′⊕κ′

The outermost trapezoids commute by naturality of ∆ and ∇. The triangles in the top corners
and the top middle rectangle commute by additivity of E ⊗ −. Finally, the middle bottom
rectangle commutes by functoriality of −⊕− and −⊗−, and the fact that f and g are E-module
homomorphisms. Commutativity of the above diagram shows that f + g is a homomorphism of
E-modules as desired. Finally, to see −f is a E-module homomorphism if f is, we would like to
show that κ′ ◦ (E ⊗ (−f)) = (−f) ◦ κ. This follows by the fact that κ′ ◦ (E ⊗ f) = f ◦ κ and
additivity of −⊗− and composition. □

Appendix D. Homological (co)algebra

The primary reference for this section will be the nLab page on derived functors in homological
algebra ([21]).

Recall that given abelian categories A and B, given an additive functor F : A → B, if F is left
exact and A has enough injectives, we may form the right derived functors RnF : A → B of F ,
for n ∈ N. Given an object A in A, we may compute RnF (A) to be the object (defined only up
to isomorphism) which is obtained as follows: First, fix an injective resolution i : A → I∗ of A,
i.e., the data of a long exact sequence

0 −→ A
i−→ I0

d0−→ I1
d1−→ I2

d2−→ I3 −→ · · ·
where each In is an injective object in A. Such a sequence is guaranteed to exist since A has
enough injectives. Then we define RnF (A) to be the nth cohomology group Hn(F (I∗)) of the
sequence

0 −−−−→ F (I0)
F (d0)−−−−→ F (I1)

F (d1)−−−−→ F (I2)
F (d2)−−−−→ F (I3) −−−−→ · · · .

It is a standard result that this definition of RnF (A) does not depend on the choice of injective
resolution i : A→ I∗.
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Definition D.1. Given an abelian category A with enough injectives and an object A in A, we
denote the right derived functors of the left exact functor HomA(A,−) : A → Ab by

ExtnA(A,−) := RnHomA(A,−).

Remark D.2. It is not uncommon to instead define ExtnA(−, A) to be the right derived functor
of the functor HomA(−, A) : Aop → Ab, in which case we may compute ExtnA(B,A) by means
of projective resolutions of A in A. It is a standard result that these definitions of ExtnA(A,B)
coincide.

Now, the first result we will state is that in order to compute the values of the right derived
functors RnF (A), we do not need to consider strictly injective resolutions of A, rather, we may
consider more generally “F -acyclic resolutions”. First, we define F -acyclic objects:

Definition D.3 ([21, Definition 3.8]). Let F : A → B be a left or right exact additive functor
between abelian categories, and suppose A has enough injectives. An object A in A is called an
F -acyclic object if RnF (A) = 0 for all n > 0.

Definition D.4. Let F : A → B be a left exact additive functor between abelian categories, and
suppose A has enough injectives. Then given an object A in A, an F -acyclic resolution i : A→ I∗F
is the data of a long exact sequence in A

0 −→ A
i−→ I0F

d0−→ I1F
d1−→ I2F

d2−→ I3F −→ · · ·

such that each InF is an F -acyclic object in A.

The reason that F -acyclic objects are useful is that they allow you to compute the right derived
functors of F without having to use strictly injective resolutions:

Proposition D.5 ([21, Theorem 3.15]). Let F : A → B be a left exact additive functor between
abelian categories. Then for each object A in A, given an F -acyclic resolution i : A → I∗F of A,
for each n ∈ N there is a canonical isomorphism

RnF (A) ∼= Hn(F (I∗F ))

between the nth right derived functor of F evaluated on A and the cohomology of the sequence
obtained by applying F to I∗F .

Appendix E. Hopf algebroids

In this appendix, we will define the notion of A-graded anticommutative Hopf algebroids (Def-
inition E.2) over an A-graded anticommutative ring R (Definition 4.5), and left comodules over
them (Definition E.6).

E.1. A-graded anticommutative Hopf algebroids over R. Given an A-graded anticommu-
tative ring R, we will define an A-graded anticommutative Hopf algebroid over R to be a co-
groupoid object in R-GCAA, i.e., a groupoid object in (R-GCAA)op. First, recall the definition
of a groupoid object in a category with pullbacks:

Definition E.1. Let C be a category with pullbacks. A groupoid object in C consists of a pair of
objects (M,O) together with five morphisms

(1) Source and target : s, t :M → O,
(2) Identity : e : O →M ,
(3) Composition: c :M ×O M →M ,
(4) Inverse: i :M →M
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Where M ×O M will always refer to the object which into the following pullback diagram in C:

M ×O M M

M O

p2

p1

s

t
⌟

For example, if we’re working in C = Set, we should think ofM as a set of morphisms, and O as a
set of objects. The functions s and t take a morphism to their domain and codomain, respectively,
and M ×O M is the collection of pairs of morphisms (g, f) ∈M ×M such that t(f) = s(g), and
the composition map c :M ×OM →M takes such a pair to the element g ◦ f ∈M . We think of
the identity e : O → M as taking some object x ∈ O to the identity morphism e(x) = idx ∈ M
on x, and the inverse map i : M → M takes a morphism f to its inverse f−1. These data are
required to make the following diagrams commute:

(1) Composition works correctly:

M ×O M M M O M M ×O M M

M O O M O

e

s

e

t

c

tp1

t

c

s

p2

s

Expressed in terms of sets, the first diagram says that the target of g ◦ f is the target
of g. The second diagram says that the domain and codomain of the identity on some
object x is x. The third diagram says that the domain of g ◦ f is the domain of f .

(2) Associativity of composition: Write M ×O (M ×O M) and (M ×O M) ×O M for the
pullbacks of (s, t ◦ c) and (s ◦ c, t), respectively, so we have commuting diagrams

(M ×O M)×O M M M ×O (M ×O M) M ×O M

M ×O M M M ×O M M

M ×O M M O M M O

p′′2

M×c

tp1

s

p2

c

p′′1

c×M
p′1

c s

p1

p2

t

p′2

where the inner and outer squares in both diagrams are pullback squares. Furthermore,
assuming the diagrams in condition (1) above are satisfied, we have that t ◦ p1 ◦ p′′2 =
t ◦ c ◦ p′′2 = s ◦ p′′1 , so that by the universal property of the pullback we have a map
M × p1 :M ×O (M ×O M) →M ×O M like so:

M ×O (M ×O M)

M ×O M M

M O

M×p1
p2

tp1

s
p′′1

p1◦p′′2

Now note that again assuming the diagrams above in (1) commute, we have s◦ c = s◦p2,
so that

s ◦ c ◦ (M × p1) = s ◦ p2 ◦ (M × p1) = s ◦ p1 ◦ p′′2 = t ◦ p2 ◦ p′′2 .
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Then by the unviersal property of the pullback we get a map a : M ×O (M ×O M) →
(M ×O M)×O M like so:

M ×O (M ×O M)

(M ×O M)×O M M

M

M ×O M M O

p′1

c

a

M×p1

s

t

p′2

p2◦p′′2

Exercise: Show that this map a is an isomorphism. Then we require that the following
diagram commutes:

M ×O (M ×O M) (M ×O M)×O M

M ×O M M M ×O M

a

M×c

c

c×M

c

Expressed in terms of sets, this diagram says h ◦ (g ◦ f) = (h ◦ g) ◦ f .
(3) Unitality of composition: Given the maps (idM , e◦ t), (e◦s, idM ) :M →M ×OM defined

by the universal property of M ×O M :

M M

M ×O M M M ×O M M

M O M O

(idM ,e◦s)

p2

tp1

s

e◦s
(e◦t,idM )

p2

tp1

s

e◦t⌟ ⌟

the following diagram commutes:

M M ×O M

M ×O M M

(e◦t,idM )

c(idM ,e◦s)

c

Expressed in terms of sets, this diagram says that given f ∈ M with s(f) = x and
t(f) = y, that f ◦ idx = f and idy ◦ f = f .

(4) Inverse: The following diagrams must commute:

M M M ×O M M M

M M O M O O M O

(idM ,i)

t

e

c

(i,idM )

s

e

i i
s

t

t

si
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where the arrows (idM , i) and (i, idM ) are determined by the universal property ofM×OM
like so:

M M

M ×O M M M ×O M M

M O M O

(i,idM )

p2

tp1

s

i

(idM ,i)

p2

tp1

s

i

Expressed in terms of sets, given f ∈ M with s(f) = x and t(f) = y, the first diagram

says that (f−1)
−1

= f , the second says that f ◦ f−1 = idy and f−1 ◦ f = idx, and the
last diagram says that the domain and codomain of f−1 are y and x, respectively.

It can be seen that groupoid objects in C = Set are precisely (small) groupoids. Now, we can
state and unravel the definition of a Hopf algebroid:

Definition E.2. Given an A-graded anticommutative ring R (Definition 4.5), an A-graded anti-

commutative Hopf algebroid over R is a co-groupoid object in R-GCAA, i.e., a groupoid object
in (R-AGrCAlg)

op
. Explicitly, an A-graded anticommutative Hopf algebroid over E is a pair

(Γ, B) of objects in R-AGrCAlg along with morphisms

(1) left unit : ηL : B → Γ (corresponding to t),
(2) right unit : ηR : B → Γ (corresponding to s),
(3) comultiplication: Ψ : Γ → Γ⊗B Γ (corresponding to c),
(4) counit : ϵ : Γ → B (corresponding to e),
(5) conjugation: c : Γ → Γ (corresponding to i),

where here Γ may be viewed as a B-bimodule with left B-module structure induced by ηL and
right B-module structure induced by ηR, so we may form the tensor product of bimodules Γ⊗B
Γ, which further may be given the structure of an A-graded anticommutative R-algebra (by

Proposition B.21), and fits into the following pushout diagram in R-GCAAg (Proposition B.22):

B Γ

Γ Γ⊗B Γ

ηR

g 7→g⊗1

ηL

g 7→1⊗g

These data must make the following diagrams commute:

(1) (Composition works correctly)

B Γ B B Γ

Γ Γ⊗B Γ Γ B Γ Γ Γ⊗B Γ

ηL

g 7→g⊗1

ηL

Ψ
ηR

ϵ

ηL

ϵ

ηR

g 7→1⊗gηR

Ψ

(2) (Coassociativity) The following diagram must commute

Γ⊗B Γ Γ Γ⊗B Γ

(Γ⊗B Γ)⊗B Γ Γ⊗B (Γ⊗B Γ)

Ψ

Ψ⊗BΓ Γ⊗BΨ

Ψ

∼=
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where (Γ ⊗B Γ) ⊗B Γ and Γ ⊗B (Γ ⊗B Γ) denote the rings which fit into the following

pushout diagrams in R-GCAA:

B Γ B Γ Γ⊗B Γ

Γ

Γ⊗B Γ (Γ⊗B Γ)⊗B Γ Γ Γ⊗B (Γ⊗B Γ)

g 7→(1⊗1)⊗g

ηR

Ψ

g⊗g′ 7→(g⊗g′)⊗1

ηL

ηR

ηL Ψ

(g⊗g′) 7→1⊗(g⊗g′)

g 7→g⊗(1⊗1)

and the isomorphism (Γ⊗B Γ)⊗B Γ → Γ⊗B (Γ⊗B Γ) sends (g⊗ g′)⊗ g′′ to g⊗ (g′⊗ g′′),
the left vertical arrow Ψ⊗ Γ sends g⊗ g′ to Ψ(g)⊗ g, and the right vertical arrow Γ⊗Ψ
sends g ⊗ g′ to g ⊗Ψ(g′) .

(3) (Co-unitality):

Γ Γ⊗B Γ

Γ⊗B Γ Γ

(ηL◦ϵ)·idΓ

Ψ

idΓ·(ηR◦ϵ)

Ψ

where the right vertical arrow sends g⊗ g′ to ηL(ϵ(g))g′ and the bottom horizontal arrow
sends g ⊗ g′ to gηR(ϵ(g

′)).
(4) (Convolution):

Γ B Γ B B Γ B

Γ Γ Γ Γ⊗B Γ Γ Γ

c

c idΓ·c

ϵ

ηL i

ϵ

ηR

c·idΓ

ηL ηR

c
ηR ηL

where the bottom left arrow in the middle diagram sends g⊗ g′ to gc(g′) and the bottom
right arrow in the middle diagram sends g ⊗ g′ to c(g)g′.

The remainder of this subsection is devoted to proving some technical lemmas about A-graded
anticommutative Hopf algebroids.

Proposition E.3. Suppose we have an A-graded anticommutative Hopf algebroid (Γ, B) over
(R, θ) with structure maps ηL, ηR, Ψ, ϵ, and c (Definition E.2). Recall in the definition, we
considered Γ ⊗B Γ to be the A-graded R-commutative ring whose underlying abelian group was
given by the tensor product of B-bimodules, where Γ has left B-module structure induced by ηL
and right B-module structure induced by ηR. Thus Γ ⊗B Γ is canonically a B-bimodule, as it
is a tensor product of B-bimodules. Then the canonical left (resp. right) B-module structure on
Γ⊗B Γ coincides with that induced by the ring homomorphism Ψ ◦ ηL (resp. Ψ ◦ ηR).

Proof. First we show the left module structures coincide. By additivity, in order to show the
module structures coincide, it suffices to show that given a homogeneous pure tensor g ⊗ g′ in
Γ⊗B Γ and some b ∈ B that Ψ(ηL(b)) · (g ⊗ g′) = (ηL(b) · g)⊗ g′, where · on the left denotes the
product in Γ ⊗B Γ and the · on the right denotes the product in Γ. By the axioms for a Hopf
algebroid, we have that Ψ(ηL(b)) = ηL(b) ⊗ 1. Thus by how the product in Γ ⊗B Γ is defined
(Proposition B.21), we have that

Ψ(ηL(b)) · (g ⊗ g′) = (ηL(b)⊗ 1) · (g ⊗ g′) = (φΓ(θ0,|g|) · ηL(b) · g)⊗ (g′ · 1) = (ηL(b) · g)⊗ g′,
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where φΓ : R→ Γ is the structure map, and the last equality follows by the fact that θ0,|g| = 1. An
entirely analagous argument yields that the canonical right module structure on Γ⊗B Γ coincides
with that induced by Ψ ◦ ηR, since Ψ ◦ ηR = 1⊗ ηR. □

Remark E.4. By the above proposition, given an A-graded commutative Hopf algebroid (Γ, B)
over R, there is no ambiguity when discussing the objects Γ⊗B (Γ⊗B Γ) and (Γ⊗B Γ)⊗B Γ —
they may both be considered as the threefold tensor product of the B-bimodule Γ with itself. In
particular, we have a canonical isomorphism of B-bimodules

(Γ⊗B Γ)⊗B Γ → Γ⊗B (Γ⊗B Γ)

sending (g⊗ g′)⊗ g′′ to g⊗ (g′ ⊗ g′′), and this is precisely the isomorphism in the coassociativity
diagram in the definition of a Hopf algebroid (Definition E.2).

Proposition E.5. Suppose we have an A-graded commutative Hopf algebroid (Γ, B) over R with
structure maps ηL, ηR, Ψ, ϵ, and c. Then ηL : B → Γ is a homomorphism of left B-modules,
ηR : B → Γ is a homomorphism of right B-modules, and Ψ : Γ → Γ ⊗B Γ and ϵ : Γ → B are
homomorphisms of B-bimodules.

Proof. Since the left (resp. right) B-module structure on Γ is induced by ηL (resp. ηR), the map
ηL (resp. ηR) is a homomorphism of left (resp. right) B-modules by definition.

Next, we want to show Ψ is a homomorphism of B-bimodules. The left (resp. right) B-module
structure on Γ is that induced by ηL (resp. ηR), and in Proposition E.3, we showed that the left
(resp. right) B-module structure on Γ⊗B Γ is that induced by Ψ ◦ ηL (resp. Ψ ◦ ηR), so that by
definition Ψ : Γ → Γ⊗B Γ is a homomorphism of left (resp. right) B-modules.

Lastly, we claim that ϵ : Γ → B is a homomorphism of B-bimodules. We need to show that
given g ∈ Γ and b, b′ ∈ B that ϵ(ηL(b)gηR(g

′)) = bϵ(g)b′. This follows from the fact that ϵ is a
ring homomorphism satisfying ϵ ◦ ηL = ϵ ◦ ηR = idB . □

E.2. Comodules over a Hopf algebroid. In what follows, fix an A-graded anticommutative
ring (R, θ) and an A-graded anticommutative Hopf algebroid (Γ, B) over R with structure maps
ηL, ηR, Ψ, ϵ, and c. We will always view Γ with its canonical B-bimodule structure, with left
B-module structure induced by ηL, and right B-module structure induced by ηR. In particular,
any tensor product over B involving Γ will always refer to Γ with this bimodule structure.

Definition E.6. A left comodule over Γ is a pair (N,ΨN ), where N is a left A-graded B-module
and ΨN : N → Γ⊗B N is an A-graded homomorphism of left A-graded B-modules. These data
are required to make the following diagrams commute

N Γ⊗B N Γ⊗B N N Γ⊗B N

B ⊗B N (Γ⊗B Γ)⊗B N Γ⊗B (Γ⊗B N)

ΨN

ϵ⊗N∼=

ΨN

Ψ⊗N

ΨN

Γ⊗ΨN

∼=

The maps ϵ⊗N and Ψ⊗N are well-defined by Proposition E.5, and the bottom isomorphism in
the right diagram is the canonical one sending (g ⊗ g′)⊗ n 7→ g ⊗ (g′ ⊗ n).

Given two left A-graded Γ-comodules (N1,ΨN1
) and (N2,ΨN2

), a homomorphism of left A-
graded comodules f : N1 → N2 is an A-graded homomorphism of the underlying left B-modules
such that the following diagram commutes:

N1 N2

Γ⊗B N1 Γ⊗B N2

f

ΨN2
ΨN1

Γ⊗f
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We write Γ-CoModA for the resulting category of left A-graded comodules over Γ. In the above
definition, we required A-graded left Γ-comodule homomorphisms to strictly preserve the grading,
but we could have instead considered left Γ-comodule homomorphisms which are of degree d for
some d ∈ A, or equivalently, the set of degree zero A-graded Γ-comodule homomorphisms from N1

to the shifted comodule (N2)∗+d. We denote the hom-set of degree-d A-graded left Γ-comodule
homomorphisms from (N1,ΨN1

) to (N2,ΨN2
) by

Homd
Γ-CoModA(N1, N2) or usually just Homd

Γ(N1, N2).

In particular, write HomΓ-CoModA(N1, N2) or just HomΓ(N1, N2) to mean the set of strictly degree
preserving (degree 0) A-graded left Γ-comodule homomorphisms from (N1,ΨN1

) to (N2,ΨN2
).

Proposition E.7. The category Γ-CoModA is an additive category.

Proof. First, we show the category is Ab-enriched. Since the forgetful functor Γ-CoModA →
B-ModA is clearly faithful, we may view hom-sets in Γ-CoModA as subsets of hom-groups in
B-ModA, so that in order to show Γ-CoModA is Ab-enriched, it suffices to show that hom-sets
in Γ-CoModA are closed under addition of module homomorphisms and taking inverses. To
that end, suppose we have two A-graded left Γ-comodule homomorphisms f, g : (N1,ΨN1) →
(N2,ΨN2), then we have

ΨN2
◦ (f + g) = (ΨN2

◦ f) + (ΨN2
◦ g)

= ((Γ⊗B f) ◦ΨN1) + ((Γ⊗B g) ◦ΨN1)

= ((Γ⊗B f) + (Γ⊗B g)) ◦ΨN1

= (Γ⊗B (f + g)) ◦ΨN1
,

where the first equality follows since ΨN2
is a homomorphism, the second follows since f and g

are left Γ-comodule homomorphisms, the third follows since ΨN1
is a homomorphism, and the

last equality follows by definition of the tensor product of modules. Hence f + g is indeed an
A-graded left Γ-comodule homomorphism, as desired. Now, we also claim −f is an A-graded left
Γ-comodule homomorphism. To that end, note that

ΨN2 ◦ (−f) = −ΨN2 ◦ f = −(Γ⊗B f) ◦ΨN1 = (Γ⊗B (−f)) ◦ΨN1 ,

where the first equality follows since ΨN2
is a homomorphism, the second follows since f is an A-

graded left Γ-comodule homomorphism, and the third equality follows by definition of the tensor
product.

Thus, we’ve shown that the hom-sets in Γ-CoModA are abelian groups, and composition is
clearly bilinear, so that Γ-CoModA is indeed Ab-enriched.

Now, in order to show Γ-CoModA is additive, it suffices to show that it contains a zero object
and has binary coproducts. First of all, it is straightforward to check that the zero left B-module
is clearly an A-graded left Γ-comodule with structure map the unique map 0 → Γ ⊗B 0 ∼= 0,
and that given any other A-graded left Γ-comodule (N,ΨN ), the unique homomorphisms of left
B-modules 0 → N and N → 0 are left comodule homomorphisms.

Now, suppose we have two A-graded left Γ-comodules (N1,ΨN1) and (N2,ΨN2). First, we
claim their direct sum as left B-modules N1 ⊕ N2 is canonically an A-graded left Γ-comodule.
We know that N1 ⊕ N2 is an A-graded left B-module by Lemma B.11, and we can define the
structure map

ΨN1⊕N2 : N1 ⊕N2

ΨN1
⊕ΨN2−−−−−−−→ (Γ⊗B N1)⊕ (Γ⊗B N2) ∼= Γ⊗B (N1 ⊕N2),
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where the final isomorphism is the canonical one sending (g1⊗n1)⊕(g2⊗n2) to (g1⊗n1)+(g2⊗n2).
Then to see this is in fact a left Γ-comodule, first consider the following diagram:

N1 ⊕N2 (Γ⊗B N1)⊕ (Γ⊗B N2) Γ⊗B (N1 ⊕N2)

(B ⊗B N1)⊕ (B ⊗B N2)

B ⊗B (N1 ⊕N2)

ΨN1
⊕ΨN2 ∼=

ϵ⊗(N1⊕N2)

(ϵ⊗N1)⊕(ϵ⊗N2)
∼=

∼=

A simple diagram chase yields the left and rightmost regions commute. The top left region
commutes since (N1,ΨN1

) and (N2,ΨN2
) are left Γ-comodules. Now, consider the following

diagram:

Γ⊗B (N1 ⊕N2) Γ⊗B ((Γ⊗B N1)⊕ (Γ⊗B N2)) Γ⊗B (Γ⊗B (N1 ⊕N2))

(Γ⊗B N1)⊕ (Γ⊗B N2) (Γ⊗B (Γ⊗B N1))⊕ (Γ⊗B (Γ⊗B N2))

N1 ⊕N2

(Γ⊗B N1)⊕ (Γ⊗B N2) ((Γ⊗B Γ)⊗B N1)⊕ ((Γ⊗B Γ)⊗B N2)

Γ⊗B (N1 ⊕N2) (Γ⊗B Γ)⊗B (N1 ⊕N2)

ΨN1
⊕ΨN2

∼=

Ψ⊗(N1⊕N2)

∼=

ΨN1
⊕ΨN2

∼=

Γ⊗B(ΨN1
⊕ΨN2

) Γ⊗B
∼=

(Γ⊗ΨN1
)⊕(Γ⊗ΨN2

)

∼=⊕∼=

∼=

(Ψ⊗N1)⊕(Ψ⊗N2)

∼=

The middle left region commutes since (N1,ΨN1
) and (N2,ΨN2

) are left Γ-comodules. Each other
region in the diagram can be seen to commute by a straightforward diagram chase.

Thus, we have shown that N1⊕N2 is indeed canonically an A-graded left Γ-comodule. Then it
remains to show that the canonical inclusions ιi : Ni ↪→ N1⊕N2 are Γ-comodule homomorphisms
for i = 1, 2, and that given Γ-comodule homomorphisms (N1,ΨN1

) → (N,ΨN ) and (N2,ΨN2
) →

(N,ΨN ), that the map N1 ⊕ N2 → N induced by the universal property of the coproduct in

B-ModA is a Γ-comodule homomorphism. This is all entirely straightforward to check by doing
a few simple diagram chases. □

Proposition E.8. The forgetful functor Γ-CoModA → B-ModA (where here B-ModA is the
category of A-graded left B-modules and degree-preserving module homomorphisms between them)

has a right adjoint Γ⊗B − : B-ModA → Γ-CoModA called the co-free construction, where the
co-free left A-graded Γ-comodule on a left A-graded B-moduleM is the B-module Γ⊗BM equipped
with the coaction

ΨΓ⊗BM : Γ⊗B M
Ψ⊗BM−−−−−→ (Γ⊗B Γ)⊗B M

∼=−→ Γ⊗B (Γ⊗B M).

Explicitly, given some (N,ΨN ) in Γ-CoMod and some M in B-ModA, the counit and unit of
this adjunction are given by

η(N,ΨN ) : N
ΨN−−→ Γ⊗B N
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and

εM : Γ⊗B M
ϵ⊗BM−−−−→ B ⊗B M

∼=−→M.

Proof. First, we need to show that given a left A-graded B-module that the given map ΨΓ⊗BM :
Γ⊗BM → Γ⊗B (Γ⊗BM) endows B with the structure of a left Γ-comodule. To that end, first
consider the following diagram:

Γ⊗B M (Γ⊗B Γ)⊗B M Γ⊗B (Γ⊗B M)

Γ⊗B M (B ⊗B Γ)⊗B M

B ⊗B (Γ⊗B M)

Ψ⊗M ∼=

ϵ⊗(Γ⊗M)

((ηL◦ϵ)·idΓ)⊗M

∼=
∼=

ηL·idΓ

(ϵ⊗Γ)⊗M

The top left region commutes by the co-unitality axiom for a Hopf algebroid. A simple diagram
chase yields commutativity of every other diagram (in particular, the bottom region commutes
since the left B-module structure on Γ is that induced by ηL). Now, consider the following
diagram:

Γ⊗B (Γ⊗B M) Γ⊗B (Γ⊗B (Γ⊗B M))

(Γ⊗B Γ)⊗B M (Γ⊗B (Γ⊗B Γ))⊗B M

Γ⊗B M

(Γ⊗B Γ)⊗B M ((Γ⊗B Γ)⊗B Γ)⊗B M

Γ⊗B (Γ⊗B M) (Γ⊗B Γ)⊗B (Γ⊗B M) Γ⊗B ((Γ⊗B Γ)⊗B M)

Ψ⊗M

∼=

Ψ⊗M

∼=
Ψ⊗(Γ⊗M) ∼=

Γ⊗(Ψ⊗M)

Γ⊗∼=

∼=

∼=

(Ψ⊗Γ)⊗M

(Γ⊗Ψ)⊗M

∼=

The left region commutes since Ψ is co-associative. A simple diagram chase yields the commuta-
tivity of every other diagram. Thus, we have indeed shown that (Γ⊗BM,ΨΓ⊗BM ) is an A-graded
left Γ-comodule, as desired.

Now, we need to show that η and ε are natural transformations which satisy the zig-zag
identities. The maps η is clearly natural by how morphisms in Γ-CoModA are defined. It is also
clear that ε is natural by functoriality of − ⊗B −. Thus, it remains to show the following two
diagrams commute for all M in B-ModA and (N,ΨN ) in Γ-CoModA:

N Γ⊗B N Γ⊗B (Γ⊗B M) Γ⊗B M

N Γ⊗B M

η(N,ΨN )

εN Γ⊗BεM

η(Γ⊗BM,ΨΓ⊗BM )
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Unravelling definitions, the left diagram becomes:

N Γ⊗B N

B ⊗B N

N

ΨN

ϵ⊗BN

∼=

∼=

This commutes since (N,ΨN ) is a left Γ-comodule. On the other hand, the right diagram becomes:

Γ⊗B (Γ⊗B M) (Γ⊗B Γ)⊗B M Γ⊗B M

Γ⊗B (B ⊗B M) (Γ⊗B B)⊗B M

Γ⊗B M Γ⊗B M

Ψ⊗M∼=

Γ⊗(ϵ⊗M)

Γ⊗∼=

(Γ⊗Bϵ)⊗M
∼=

(idΓ·ηR)⊗M

(idΓ·(ηR◦ϵ))⊗M

The rightmost region commutes by co-unitality of Ψ, while a simple diagram chase yields com-
mutativity of the remaining regions (in particular, the bottom let region commutes because the
right B-module structure on Γ is induced by ηR). □

Proposition E.9. Suppose that Γ is flat as a right B-module, i.e., suppose ηR : B → Γ is a
flat ring homomorphism. Then the category Γ-CoModA is an abelian category and has enough
injectives.

Proof. In Proposition E.7, we showed that Γ-CoModA is an additive category, so it remains to
show that it has all kernels and cokernels, and that for all morphisms f in Γ-CoModA that the
comparison morphism

coker(ker f) → ker(coker f)

is an isomorphism. First, let f : (N1,ΨN1) → (N2,ΨN2) be a morphism in Γ-CoModA, and
consider the following diagram:

ker f N1 N2

Γ⊗B ker f Γ⊗B N1 Γ⊗B N2

f

ΨN2
ΨN1

Γ⊗f

By the assumption that Γ is flat as a right B-module, we have that Γ ⊗B − is exact, so that in
particular it preserves kernels, meaning Γ ⊗B ker f = ker(Γ ⊗B f). This gives the bottom left

horizontal arrow. Then by the universal property of the kernel in B-ModA and the fact that the
right square commutes, we get the vertical dashed arrow which makes the left square commute, as
desired, and that ker f with this structure map is indeed the kernel of f in Γ-CoMod. Showing
that this structure map makes the two diagrams in Definition E.6 commute is an exercise in
diagram chasing and applying universal properties. Now, showing that the cokernel of f belongs to
Γ-CoModA is formally dual. Finally, it follows from construction that the comparison morphism

coker(ker f) → ker(coker f)

formed in Γ-CoModA is precisely the comparison morphism in B-Mod, which is an isomorphism,
and thus clearly an isomorphism in Γ-CoModA as well. Thus Γ-CoModA is indeed abelian, as
desired. □
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Proposition E.10 ([25, Lemma 3.5]). Suppose that Γ is flat as a right B-module, i.e., suppose

ηR : B → Γ is a flat ring homomorphism. Let P be an A-graded left Γ-comodule in Γ-CoModA

such that the underlying A-graded B-module is a graded projective module. Then every co-free
module (Proposition E.8) is an F -acyclic object (Definition D.3) for the covariant hom functor
HomΓ(P,−).

Proof. We need to show that ExtnΓ(N,Γ⊗BM) vanishes for all A-graded B-modules M . First of

all, let i :M → I∗ be an injective resolution of M in B-ModA, so we have an exact sequence of
A-graded B-modules

0 −→M
i−→ I0

d0−→ I1
d1−→ I2

d2−→ I3 −→ · · · .
Then Γ is flat as a right B-module, the sequence remains exact after we tensor it with Γ on the
left. Furthermore, it is a general categorical fact that right adjoints between abelian catgories
preserve injective objects. Thus Γ⊗i : Γ⊗BM → Γ⊗BI∗ is an injective resolution in Γ-CoModA.
Then for n > 0, we have

ExtnΓ(N,Γ⊗B M) ∼= Hn(HomΓ(N,Γ⊗B I∗)) ∼= Hn(HomB(N, I
∗)) ∼= 0,

where the first isomorphism follows by the forgetful-cofree adjunction for comodules over a Hopf
algebroid (Proposition E.8), and the final isomorphism follows by the fact that N is a graded

projective module, i.e., a projective object in the abelian category B-ModA, so that HomB(N,−)
is an exact functor. □
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