Rudin Exercise 3.19

To give a rigorous proof of this claim is rather subtle, so we provide a fully rigorous argument here.

3.19. Associate to each sequence a = (a,;) in which «, is 0 or 2, the real number
o0
z(a) =

n=1

o
3n

Prove the set of all z(a) is precisely the Cantor set described in Theorem 2.44.

Proof. In what follows, let E1 D E5 O --- denote the sets defined in Theorem 2.44, so that the
Cantor set may be written as P = ﬂneN FE,, and each F, is a finite union of 2" disjoint closed
intervals Ip, 1, In,2, ..., In2n C [0, 1] of length 1/3":

-
Ep = Inx-
k=1

We will assume that the I, ;’s are indexed in increasing order, so that sup I, < infl, 41
for all 1 < k < 2™ Moreover, note given a sequence a = (ay,) of 0’s and 2’s, we have that
0 < a,/3™ <2/3" and we know
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> ono §2 converges by the comparison test (Theorem
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converges by Theorem 3.28, so that z(a
3.25).

Now, let @ = (o) be a sequence of 0’s and 2’s, then we claim that « := x(a) € P. For each
n €N, let

so that z,, — x. Then we claim that for each n € N, there exists some 1 < k,, < 2" such that
x,, = inf I, 1, . We prove this by induction. In the case n = 1, we have that 1 = 0 or 7 = 2/3,
and recall By = [0, %] U [%, 1], so the base case is satisfied. Now, suppose that z,, = inf I,, s, for
some 1 < k, <27, so that
1

Ik, = l:xnvxn + 3n:| .
Note that by how the F,’s are defined, the intervals obtained by removing the middle one third
of I, 1, are intervals in E), 11, so that there exists 1 < k41 < 27+1 guch that

2 1
In—&-l,kn_H = |:I’n, Ty + 371-&-1:| and In+1,kn+1+1 = |::Cn + ﬁ,l’n + 37 .
Finally, note that by how the x,’s are defined,
. 2 .
Tpy1 = Ty + FrEsy =z, = inf Tnitknyy or Tpy1 = Tp + FrEsY = inf Tt kg vt

Thus, we’ve proven x,,41 is the leftmost endpoint of some interval making up E, 11, as desired.
In particular, we’ve shown that x,, € F, for all n. Let N € N. Since Ex 2O FE,, for alln > N,
we have that x,, € Ey for all n > N. Thus since Ey is closed (it is a finite union of closed
intervals) and z,, — x, it follows by the definition of a limit that € E. Our choice of N € N
was arbitrary, and we showed that x € En, meaning x € ﬂNeN En = P, as desired.

On the other hand, let = be a point in the Cantor set, so that x € E,, for all n € N. We
inductively define a sequence a = («v,) satisfying the following properties:
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(i) For each n € N, a,, € {0,2}.
(ii) For each n € N, there exists some 1 < k,, < 2" such that x € I, , and z,, :== Y | §F =
inf In,kn-

To start, note that x € Eq, so either x € [O, é] orx € [%, 1}. In the former case, set oy = 0,
and in the latter case set a; = 2. Then clearly (i) and (ii) above are satisfied, as x1 = «a3/3.
Now supposing we’ve defined «q, ..., a, for some n € N so that (i) and (ii) above are satisfied,
we defined a,, 11 as follows. By our induction hypothesis, there exists 1 < k,, < 2" such that
x € I, 1, and x,, =inf I, , so that

1
In n nydn on |
e {9«“ T +3n]

Then since z € E,,41, there exists some 1 < k,, 41 < 2"7! such that = € I,,41
since Ip, i, N Lpy1k

wi1- Moreover,

i1 7 0, by how E, 4, is constructed from E,, we have that either

S
Sn

1 2
In+1,kn+1 = |Zp, Ty + g+l or In+1,kn+1 = |Tn + Wﬂbn +

In the former case, set a,4+1 = 0, so that x,11 = =, = inf I, 11

i1, as desired. In the latter
case, set o411 = 2, so that x,, 41 =z, + sn% =inf I 41k

i1 s desired.

Now that we’ve constructed the sequence, let ¢ > 0, and pick N large enough so that
1/3N < ¢ (e.g., take N > logs(1/¢)). Then given n > N, by construction we have that z,, and
x both live in the interval I,, ., , which is of length 1/3" < 1/3"¥ < ¢, so that in particular for
all n > N we have d(z,,r) < e. Thus
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z(a :E — = lim z, =«
( ) 3n n—oo n ’
n=1
as desired. 0O



