
Rudin Exercise 3.19

To give a rigorous proof of this claim is rather subtle, so we provide a fully rigorous argument here.

3.19. Associate to each sequence a = (αn) in which αn is 0 or 2, the real number

x(a) =

∞∑
n=1

αn

3n
.

Prove the set of all x(a) is precisely the Cantor set described in Theorem 2.44.

Proof. In what follows, let E1 ⊇ E2 ⊇ · · · denote the sets defined in Theorem 2.44, so that the
Cantor set may be written as P =

⋂
n∈N En, and each En is a finite union of 2n disjoint closed

intervals In,1, In,2, . . . , In,2n ⊆ [0, 1] of length 1/3n:

En =

2n⋃
k=1

In,k.

We will assume that the In,k’s are indexed in increasing order, so that sup In,k < inf In,k+1

for all 1 ≤ k < 2n. Moreover, note given a sequence a = (αn) of 0’s and 2’s, we have that
0 ≤ αn/3

n ≤ 2/3n, and we know
∞∑

n=1

2

3n
= 2

∞∑
n=1

1

3n

converges by Theorem 3.28, so that x(a) =
∑∞

n=1
αn

3n converges by the comparison test (Theorem
3.25).

Now, let a = (αn) be a sequence of 0’s and 2’s, then we claim that x := x(a) ∈ P . For each
n ∈ N, let

xn :=

n∑
k=1

αk

3k
,

so that xn → x. Then we claim that for each n ∈ N, there exists some 1 ≤ kn ≤ 2n such that
xn = inf In,kn

. We prove this by induction. In the case n = 1, we have that x1 = 0 or x1 = 2/3,
and recall E1 =

[
0, 1

3

]
∪ [ 23 , 1], so the base case is satisfied. Now, suppose that xn = inf In,kn

for
some 1 ≤ kn ≤ 2n, so that

In,kn
=

[
xn, xn +

1

3n

]
.

Note that by how the En’s are defined, the intervals obtained by removing the middle one third
of In,kn are intervals in En+1, so that there exists 1 ≤ kn+1 ≤ 2n+1 such that

In+1,kn+1
=

[
xn, xn +

1

3n+1

]
and In+1,kn+1+1 =

[
xn +

2

3n+1
, xn +

1

3n

]
.

Finally, note that by how the xn’s are defined,

xn+1 = xn +
0

3n+1
= xn = inf In+1,kn+1

or xn+1 = xn +
2

3n+1
= inf In+1,kn+1+1.

Thus, we’ve proven xn+1 is the leftmost endpoint of some interval making up En+1, as desired.
In particular, we’ve shown that xn ∈ En for all n. Let N ∈ N. Since EN ⊇ En for all n ≥ N ,
we have that xn ∈ EN for all n ≥ N . Thus since EN is closed (it is a finite union of closed
intervals) and xn → x, it follows by the definition of a limit that x ∈ EN . Our choice of N ∈ N
was arbitrary, and we showed that x ∈ EN , meaning x ∈

⋂
N∈N EN = P , as desired.

On the other hand, let x be a point in the Cantor set, so that x ∈ En for all n ∈ N. We
inductively define a sequence a = (αn) satisfying the following properties:
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(i) For each n ∈ N, αn ∈ {0, 2}.
(ii) For each n ∈ N, there exists some 1 ≤ kn ≤ 2n such that x ∈ In,kn and xn :=

∑n
i=1

αi

3i =
inf In,kn .

To start, note that x ∈ E1, so either x ∈
[
0, 1

3

]
or x ∈

[
2
3 , 1

]
. In the former case, set α1 = 0,

and in the latter case set α1 = 2. Then clearly (i) and (ii) above are satisfied, as x1 = α1/3.
Now supposing we’ve defined α1, . . . , αn for some n ∈ N so that (i) and (ii) above are satisfied,
we defined αn+1 as follows. By our induction hypothesis, there exists 1 ≤ kn ≤ 2n such that
x ∈ In,kn

and xn = inf In,kn
, so that

In,kn
=

[
xn, xn +

1

3n

]
.

Then since x ∈ En+1, there exists some 1 ≤ kn+1 ≤ 2n+1 such that x ∈ In+1,kn+1
. Moreover,

since In,kn ∩ In+1,kn+1 ̸= ∅, by how En+1 is constructed from En, we have that either

In+1,kn+1
=

[
xn, xn +

1

3n+1

]
or In+1,kn+1

=

[
xn +

2

3n+1
, xn +

1

3n

]
In the former case, set αn+1 = 0, so that xn+1 = xn = inf In+1,kn+1

, as desired. In the latter
case, set αn+1 = 2, so that xn+1 = xn + 2

3n+1 = inf In+1,kn+1
, as desired.

Now that we’ve constructed the sequence, let ε > 0, and pick N large enough so that
1/3N < ε (e.g., take N > log3(1/ε)). Then given n ≥ N , by construction we have that xn and
x both live in the interval In,kn

, which is of length 1/3n ≤ 1/3N < ε, so that in particular for
all n ≥ N we have d(xn, x) < ε. Thus

x(a) =

∞∑
n=1

αn

3n
= lim

n→∞
xn = x,

as desired.
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