

Category Theory

Categories, functors, natural transformations, and (co)limits

Isaiah Dailey

UC San Diego

July 6, 2022

Category Definition

A category $\ensuremath{\mathbb{C}}$ consists of the following data

- ► A set Ob(C), whose elements are called the *objects* of C.
- For any two objects x, y ∈ Ob(C), a set C(x, y) (also denoted Hom_C(x, y)) of morphisms from x to y. We will often draw a morphism f ∈ C(x, y) as an arrow

$$f: x \longrightarrow y$$

We call $\mathcal{C}(x, y)$ a hom-set.

For every triple of objects x, y, and z in $Ob(\mathcal{C})$, a function

$$-\circ -: \mathfrak{C}(y,z) \times \mathfrak{C}(x,y) \to \mathfrak{C}(x,z)$$

called *composition*.

For every objects x in Ob(C), a distinguished morphism id_x ∈ C(x, x) called the *identity morphism* on x.

Category Definition (Cont.)

Together, these data must satisfy:

The identity morphism is unital w.r.t. composition. In other words, given a morphism f ∈ C(x, y), it must be true that

$$f \circ \mathrm{id}_x = f = \mathrm{id}_y \circ f.$$

Composition must be associative. In other words, given morphisms f : z → w, g : y → z, and h : x → y, it must be true that:

$$f \circ (g \circ h) = (f \circ g) \circ h.$$

WARNINGS

- A "morphism" is to a hom-set as a vector is to a vector space. They are nothing more than elements of hom-sets!
- Morphisms are not functions (at least in general).
- ▶ Hom-sets, and by extension morphisms, are *not* unique! It is possible to have two equal hom-sets C(x, y) = C(a, b), even if $x \neq a$ or $y \neq b$!

Category Examples

- 1. The category Set, whose objects are sets and morphisms are regular set functions.
- 2. The category CRing, whose objects are commutative rings and morphisms are ring morphisms.
- 3. The category Ab, whose objects are abelian groups and morphisms are group homomorphisms.
- 4. Given a commutative ring *R*, we can define the category *R*-Mod, whose objects are *R*-modules and morphisms are *R*-linear maps.
- 5. The category Top whose objects are topological spaces and morphisms are continuous maps.
- 6. The category Man whose objects are smooth manifolds and morphisms are smooth maps.
- 7. The category Ord whose objects are preorders and morphisms are monotone (order-preserving) maps.

Set-Theoretic Issues

- ▶ None of the previous examples are actually categories, by how I've defined it.
- There is no "set of all sets".
- Solution: we have a notion of "small" vs. "big" sets, where the set of all small sets is a big set.
- Set is really the category of all *small* sets. Similarly, Ab is the category whose objects are small abelian groups, etc.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

- Definition: We say a category \mathcal{C} is *small* if $Ob(\mathcal{C})$ is a small set.
- None of the previously listed categories are small.

Category Examples Cont.

- 1. Given a category \mathcal{C} , we can define a category \mathcal{C}^{op} by $Ob(\mathcal{C}^{\text{op}}) := Ob(\mathcal{C})$ and $\mathcal{C}^{\text{op}}(x, y) := \mathcal{C}(y, x)$. Then composition in \mathcal{C}^{op} is simply composition in \mathcal{C} .
- Given a group (G, ·, e), we can define a category BG with Ob(BG) := {*}, and BG(*, *) := G. Composition is defined by g ∘ h := g · h (so that e is the identity morphism on *).
- 3. Given a preorder (P, \leq) (so \leq is a transitive and reflexive relation on P), we can define a category CP with Ob(CP) := P and:

$${\cal CP}(x,y):=egin{cases} \{*\} & x\leq y\ 0 & {
m else.} \end{cases}$$

Exercise

Show that there is only one possible way to define composition in *CP*, and that it indeed gives an associative, unital composition operation.

Category Examples Cont.

4. Given two categories \mathcal{C} and \mathcal{D} , we can define the *product category* $\mathcal{C} \times \mathcal{D}$ by $Ob(\mathcal{C} \times \mathcal{D}) := Ob(\mathcal{C}) \times Ob(\mathcal{D})$ and

$$(\mathfrak{C} \times \mathfrak{D})((c,d),(c',d')) := \mathfrak{C}(c,c') \times \mathfrak{D}(d,d').$$

Then composition and identities are defined in the obvious way.

Let (X, U) be a topological space. Then we can consider the category Op(X) whose objects are open sets (so Ob(Op(X)) := U) and morphisms are the inclusions of sets.

Exercise

Show that given a topological space (X, \mathcal{U}) , that Op(X) is "the same as" the category $C\mathcal{U}$, when viewing (\mathcal{U}, \subseteq) as a poset.

Definition

Given a category \mathcal{C} , we call a morphism $f : x \to y$ an *isomorphism* if there exists a morphism $f^{-1} : y \to x$ such that $f^{-1} \circ f = \operatorname{id}_x$ and $f \circ f^{-1} = \operatorname{id}_y$. Furthermore, we say that x and y are *isomorphic* in this case, and write $x \cong y$.

Examples

In Set, the isomorphisms are bijections. In Ab, the isomorphisms are precisely isomorphisms of groups. In Top, the isomorphisms are homeomorphisms.

Exercise

Prove that given a group G, the category BG is a *groupoid*, that is, a category in which every morphism is an isomorphism.

Understand the sentence "A group is a groupoid with a single object."

Exercise

Understand the sentence "A monoid is a category with a single object." This justifies calling a category a "monoidoid."

Functor Definition

Let \mathfrak{C} and \mathfrak{D} be categories. A *functor* $F : \mathfrak{C} \to \mathfrak{D}$ from \mathfrak{C} to \mathfrak{D} consists of the following data:

- ▶ A map of sets $F : Ob(\mathcal{C}) \to Ob(\mathcal{D})$.
- ▶ For every pair of objects $x, y \in C$, a map of hom-sets:

$$F_{x,y}: \mathfrak{C}(x,y) \longrightarrow \mathfrak{D}(F(x),F(y))$$

These data must satisfy:

The maps $F_{x,y}$ must be *functorial*, that is, for any pair of morphisms $g : x \to y$ and $f : y \to z$, we must have:

$$F_{y,z}(f) \circ F_{x,y}(g) = F_{x,z}(f \circ g).$$

Note: Often, given a morphism $f : x \to y$, we write F(f) to denote the morphism $F_{x,y}(f)$.

The assignment must be *unital*, that is, given any object x in \mathcal{C} , we must have

$$F_{x,x}(\mathrm{id}_x) = \mathrm{id}_{F(x)}.$$

Functor Examples

- ► There is a functor U : Ab → Set (the "forgetful functor") which takes an abelian group (G, +, 0) to its underlying set of elements G, and takes a group homomorphism to its underlying set-function.
- ▶ Given an *R* module *N*, we can define a functor $\otimes_R N : R \operatorname{-Mod} \to R \operatorname{-Mod}$ which takes a module *M* to the module $M \otimes_R N$ and an *R*-linear map $\varphi : M \to M'$ to the *R*-linear map $\varphi \otimes_R 1 : M \otimes N \to M' \otimes N$.
- ► Given any category C and some object c ∈ Ob(C), we can define the functor (called the "representable presheaf"):

$$egin{aligned} &h_c: {\mathbb C}^{\mathrm{op}} o \mathsf{Set} \ & x \mapsto {\mathbb C}(x,c) \ &(f \in {\mathbb C}^{\mathrm{op}}(x,y)) \mapsto (-\circ f: {\mathbb C}(y,c) o {\mathbb C}(x,c)) \end{aligned}$$

► Given any two categories C and D and a distinguished object d ∈ Ob(D), we can define the *constant functor* <u>d</u> : C → D which sends every object in C to d and every morphism in C to the identity morphism on d.

Exercise

Show that given a group G, any functor $F : BG \to Set$ is equivalent to a choice of a set F(*) and a G-action on that set.

Exercise

Show that functors preserve isomorphisms.

Remark

Given any category C, there exists an identity functor $Id_{\mathcal{C}}: \mathcal{C} \to \mathcal{C}$ which takes each object and each morphism to itself.

Exercise

Given functors $G : \mathcal{C} \to \mathcal{D}$ and $F : \mathcal{D} \to \mathcal{E}$, define a suitable notion of the composition $F \circ G : \mathcal{C} \to \mathcal{E}$. Show your construction is associative and unital w.r.t. the identity functor.

Remark

There exists a category Cat, whose objects are (small) categories and whose morphisms are functors.

Natural Transformation Defintion

Let *F* and *G* be functors $\mathcal{C} \to \mathcal{D}$. Then a *natural transformation* η from *F* to *G*, denoted by $\eta: F \Rightarrow G$, is a collection

$${\eta_c: F(c) \to G(c)}_{c \in Ob(\mathcal{C})}$$

of morphisms in \mathcal{D} , such that for every morphism $f : x \to y$ in \mathcal{C} , the following diagram commutes:

In other words, it must be true that $\eta_y \circ F(f) = G(f) \circ \eta_x$. We call this diagram the *naturality square* for f.

Natural Transformation Examples

- 1. Given a group G and functors $X, Y : BG \Rightarrow$ Set, a natural transformation $\eta : X \Rightarrow Y$ is the data of an *equivariant map* $\eta_* : X(*) \rightarrow Y(*)$.
- Given any functor F : C → D, there is an "identity" natural transformation id^F : F ⇒ F whose component at x ∈ Ob(C) is the identity morphism id_{F(x)} : F(x) → F(x) in D.
- 3. Given functors $F, G, H : \mathcal{C} \to \mathcal{D}$ and natural transformations $\mu : F \Rightarrow G$, $\eta : G \Rightarrow H$, we can define their "composition" $\eta \circ \mu : F \Rightarrow H$ whose component at $c \in Ob(\mathcal{C})$ is given by

$$(\eta \circ \mu)_{\mathbf{c}} := \eta_{\mathbf{c}} \circ \mu_{\mathbf{c}}.$$

Exercise

Check that the above construction indeed defines a natural transformation, and that this composition operation is associative and unital w.r.t. the identity natural transformation.

Remark

Given categories \mathcal{C} and \mathcal{D} , there exists a category $\operatorname{Fun}(\mathcal{C}, \mathcal{D})$ (sometimes just denoted $[\mathcal{C}, \mathcal{D}]$ or $\mathcal{D}^{\mathcal{C}}$) whose objects are functors $\mathcal{C} \to \mathcal{D}$ and morphisms are natural transformations between functors.

Exercise

Show that the isomorphisms in $\operatorname{Fun}(\mathcal{C}, \mathcal{D})$ are the *natural isomorphisms*, i.e., those natural transformations η such that η_c is an isomorphism in \mathcal{D} for every $c \in \operatorname{Ob}(\mathcal{C})$.

Example (The Yoneda Embedding)

Given a category $\ensuremath{\mathbb{C}}$, the Yoneda Embedding is the functor

Exercise

How can we define the Yoneda embedding on morphisms in C? "Hint": a morphism $f: x \to y$ in C needs to be sent to a natural transformation $\eta: C(-, x) \Rightarrow C(-, y)$.

Initial & Terminal Objects

Definition

An *initial object* in a category \mathcal{C} is an object $i \in Ob(\mathcal{C})$ such that for every object $x \in Ob(\mathcal{C})$, there exists precisely one morphism $i \to x$. In other words, i is initial if $\mathcal{C}(i, x)$ is a singleton set for all objects x in \mathcal{C} .

Definition

A terminal object in a category \mathcal{C} is an object $t \in Ob(\mathcal{C})$ such that $\mathcal{C}(x, t)$ is a singleton set for all objects x in \mathcal{C} .

Remark

An object in ${\mathfrak C}$ is an initial object if and only if it is a terminal object in ${\mathfrak C}^{\rm op},$ and vice-versa.

Initial & Terminal Objects Cont.

Exercise

In a category \mathcal{C} , the initial object (resp. terminal object), if it exists, is "unique up to unique isomorphism." In other words, that means if x and y are both initial (resp. terminal) objects in \mathcal{C} , then there exists a unique isomorphism $x \to y$.

Examples

The initial object in Set is the empty set \emptyset , while "the" terminal object is the singleton set {*}, often just denoted *.

The initial object and the terminal object in Ab coincide, namely, it is the trivial group. Given a nontrivial group G, the category BG has no initial or terminal object.

Remark

If a preorder (P, \leq) has a unique maximal element, then that maximal element is the terminal object in CP. Similarly, if it has a unique minimal element, then that minimal element is the initial object in CP.

(Co)limits

Definition

Let \mathcal{I} be a small category and $F : \mathcal{I} \to \mathcal{C}$ be a functor. In the context of (co)limits, we call F a *diagram of shape* \mathcal{I} , or just a *diagram*, in \mathcal{C} .

Definition

A cone under F, or a cocone, is a pair (c, η) , where $c \in Ob(\mathbb{C})$ is an object and $\eta : F \Rightarrow \underline{c}$ is a natural transformation.

Definition

Once again, let F be a diagram of shape \mathcal{I} in \mathcal{C} . Then a *cone over* F, or just a *cone*, is a pair (c, η) , where $c \in Ob(\mathcal{C})$ and $\eta : \underline{c} \Rightarrow F$ is a natural transformation.

Cone picture

Typically, we imagine ${\mathbb J}$ is a very small category (even finite). Maybe ${\mathbb J}$ looks something like this:

Then if (c, η) is a cone under F, we have the following image in \mathcal{C} .

And if (c, η) is a cone over F, we have the following image in \mathcal{C} .

Definition

Given a diagram F of shape \mathfrak{I} in a category \mathfrak{C} (so a functor $F : \mathfrak{I} \to \mathfrak{C}$) and two cocones (c, η) and (d, μ) , a morphism of cocones is a morphism $f \in \mathfrak{C}(c, d)$ such that for all $x \in \mathrm{Ob}(\mathfrak{C})$, $\mu_x = f \circ \eta_x$.

● -----> ●

Definition

Given a diagram F of shape \mathfrak{I} in a category \mathfrak{C} (so a functor $F : \mathfrak{I} \to \mathfrak{C}$) and two cocones (c, η) and (d, μ) , a *morphism of cocones* is a morphism $f \in \mathfrak{C}(c, d)$ such that for all $x \in \mathrm{Ob}(\mathfrak{C})$, $\mu_x = f \circ \eta_x$.

Definition

Given a diagram F of shape \mathfrak{I} in a category \mathfrak{C} (so a functor $F : \mathfrak{I} \to \mathfrak{C}$) and two cocones (c, η) and (d, μ) , a *morphism of cocones* is a morphism $f \in \mathfrak{C}(c, d)$ such that for all $x \in \mathrm{Ob}(\mathfrak{C})$, $\mu_x = f \circ \eta_x$.

Definition

Given a diagram F of shape \mathcal{I} in a category \mathfrak{C} and two cones (c, η) , (d, μ) , a morphism of cones is a morphism $f \in \mathfrak{C}(c, d)$ such that for all $x \in \mathrm{Ob}(\mathfrak{C})$, $\mu_x \circ f = \eta_x$.

Definition

Given a diagram F of shape \mathcal{I} in a category \mathcal{C} , define $\operatorname{Cone}_{\mathcal{C}}(F)$ to be the category whose objects are cones under F (cocones) and morphisms are morphisms of cocones, and define $\operatorname{Cone}^{\mathcal{C}}(F)$ to be the category whose objects are cones over F (cones) and morphisms are morphisms of cones.

Definition

Given a diagram F of shape \mathfrak{I} in a category \mathfrak{C} , the *colimit cone* for F is the initial object in $\operatorname{Cone}_{\mathfrak{C}}(F)$ (if it exists), and the *limit cone* for F is the terminal object in $\operatorname{Cone}^{\mathfrak{C}}(F)$ (if it exists).

If (c, η) is a colimit cone for F, then we call the object c the *colimit* of F. Similarly, if (c, η) is a limit cone for F, then we call the object c the *limit* of F. The colimit cone of F is the "shallowest" cone under F.

The limit cone of F is the "shallowest" cone over F.

Extra

Exercise

Given a functor $F : \mathcal{C} \to \mathcal{D}$, how can we define a functor $F^{\mathrm{op}} : \mathcal{C}^{\mathrm{op}} \to \mathcal{D}^{\mathrm{op}}$? Using that definition, given a natural transformation $\eta : F \Rightarrow G$, how can we define a natural transformation $\eta^{\mathrm{op}} : G^{\mathrm{op}} \Rightarrow F^{\mathrm{op}}$?

Exercise

Let F be a diagram of shape \mathcal{I} in a category \mathcal{C} . Then the following are equivalent:

•
$$(c, \eta)$$
 is a colimit cone for F .

• (c, η^{op}) is a limit cone for the functor $F^{\text{op}} : \mathfrak{I}^{\text{op}} \to \mathfrak{C}^{\text{op}}$.

Hence, the limit is the *dual* of the colimit. In other words, the definition of a limit can be obtained by reversing all the arrows in the definition of the colimit.

Examples of (Co)limits in Set

- 1. Co(limit) of the empty diagram
- 2. Co(limit) of a discrete diagram
- 3. Co(limit) of a (co)span
- 4. Co(limit) of paralell morphisms
- 5. Co(limit) of two isomorphic objects

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

Direct Limits

Definition (Directed Set)

A directed (I, \leq) set is a *preorder* (so \leq is a reflexive and transitive relation on I) with the additional property that every pair of elements has an upper bound, that is, if $a, b \in I$, then there must exist some $c \in I$ with $a \leq c$ and $b \leq c$.

Definition (Direct System)

Given a directed set (I, \leq) , a *direct system* on \mathcal{C} is a functor $F : CI \to \mathcal{C}$ (a diagram of shape CI in \mathcal{C}). We often denote a direct system as a family of objects and morphisms $\langle A_i, f_{ij} \rangle$ indexed by I, where the f_{ij} 's are viewed like "inclusions."

Definition (Direct Limit)

Given a direct system $\langle A_i, f_{ij} \rangle$ in a category \mathbb{C} (so the data of a functor $F : CI \to \mathbb{C}$)., the *direct limit* of the system, denoted by

$$\varinjlim A_i,$$

is the **colimit** (!) of the functor F.

Example

An infinite chain of ideals $\mathfrak{p}_1 \subseteq \mathfrak{p}_2 \subseteq \mathfrak{p}_3 \subseteq \cdots$ in a ring A determines a direct system $F : C\mathbb{N} \to A$ -Mod (How?). The direct limit of this system (i.e., the colimit of F) is the union $\bigcup_{i=1}^{\infty} \mathfrak{p}_i$.

In a lot of concrete categories, direct limits "act like unions."

Inverse Limits

Definition (Inverse Limit)

Given a directed set (J, \leq) and a functor $F : CJ^{op} \to \mathbb{C}$, the limit of F is often called an *inverse limit*, and is denoted

 $\varprojlim A_j,$

where the A_j denote the objects in the image of F.

Resources:

- 1. nLab
- 2. Wikipedia
- 3. Emily Riehl, Category Theory in Context
- 4. Notes by Walker H. Stern (UVA Postdoc)