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Category Definition

A category C consists of the following data

I A set Ob(C), whose elements are called the objects of C.

I For any two objects x , y ∈ Ob(C), a set C(x , y) (also denoted HomC(x , y)) of
morphisms from x to y . We will often draw a morphism f ∈ C(x , y) as an arrow

f : x y

We call C(x , y) a hom-set.

I For every triple of objects x , y , and z in Ob(C), a function

− ◦ − : C(y , z)× C(x , y)→ C(x , z)

called composition.

I For every objects x in Ob(C), a distinguished morphism idx ∈ C(x , x) called the
identity morphism on x .



Category Definition (Cont.)

Together, these data must satisfy:

I The identity morphism is unital w.r.t. composition. In other words, given a
morphism f ∈ C(x , y), it must be true that

f ◦ idx = f = idy ◦ f .

I Composition must be associative. In other words, given morphisms f : z → w ,
g : y → z , and h : x → y , it must be true that:

f ◦ (g ◦ h) = (f ◦ g) ◦ h.



WARNINGS

I A “morphism” is to a hom-set as a vector is to a vector space. They are nothing
more than elements of hom-sets!

I Morphisms are not functions (at least in general).

I Hom-sets, and by extension morphisms, are not unique! It is possible to have two
equal hom-sets C(x , y) = C(a, b), even if x 6= a or y 6= b!



Category Examples

1. The category Set, whose objects are sets and morphisms are regular set functions.

2. The category CRing, whose objects are commutative rings and morphisms are ring
morphisms.

3. The category Ab, whose objects are abelian groups and morphisms are group
homomorphisms.

4. Given a commutative ring R, we can define the category R-Mod, whose objects
are R-modules and morphisms are R-linear maps.

5. The category Top whose objects are topological spaces and morphisms are
continuous maps.

6. The category Man whose objects are smooth manifolds and morphisms are
smooth maps.

7. The category Ord whose objects are preorders and morphisms are monotone
(order-preserving) maps.



Set-Theoretic Issues

I None of the previous examples are actually categories, by how I’ve defined it.

I There is no “set of all sets”.

I Solution: we have a notion of “small” vs. “big” sets, where the set of all small
sets is a big set.

I Set is really the category of all small sets. Similarly, Ab is the category whose
objects are small abelian groups, etc.

I Definition: We say a category C is small if Ob(C) is a small set.

I None of the previously listed categories are small.



Category Examples Cont.

1. Given a category C, we can define a category Cop by Ob(Cop) := Ob(C) and
Cop(x , y) := C(y , x). Then composition in Cop is simply composition in C.

2. Given a group (G , ·, e), we can define a category BG with Ob(BG ) := {∗}, and
BG (∗, ∗) := G . Composition is defined by g ◦ h := g · h (so that e is the identity
morphism on ∗).

3. Given a preorder (P,≤) (so ≤ is a transitive and reflexive relation on P), we can
define a category CP with Ob(CP) := P and:

CP(x , y) :=

{
{∗} x ≤ y

0 else.

Exercise
Show that there is only one possible way to define composition in CP, and that it
indeed gives an associative, unital composition operation.



Category Examples Cont.

4. Given two categories C and D, we can define the product category C×D by
Ob(C×D) := Ob(C)×Ob(D) and

(C×D)((c , d), (c ′, d ′)) := C(c , c ′)×D(d , d ′).

Then composition and identities are defined in the obvious way.
5. Let (X ,U) be a topological space. Then we can consider the category Op(X )

whose objects are open sets (so Ob(Op(X )) := U) and morphisms are the
inclusions of sets.

Exercise
Show that given a topological space (X ,U), that Op(X ) is “the same as” the category
CU, when viewing (U,⊆) as a poset.



Definition
Given a category C, we call a morphism f : x → y an isomorphism if there exists a
morphism f −1 : y → x such that f −1 ◦ f = idx and f ◦ f −1 = idy . Furthermore, we
say that x and y are isomorphic in this case, and write x ∼= y .

Examples

In Set, the isomorphisms are bijections. In Ab, the isomorphisms are precisely
isomorphisms of groups. In Top, the isomorphisms are homeomorphisms.

Exercise
Prove that given a group G , the category BG is a groupoid, that is, a category in
which every morphism is an isomorphism.
Understand the sentence “A group is a groupoid with a single object.”

Exercise
Understand the sentence “A monoid is a category with a single object.” This justifies
calling a category a “monoidoid.”



Functor Definition
Let C and D be categories. A functor F : C→ D from C to D consists of the following
data:
I A map of sets F : Ob(C)→ Ob(D).
I For every pair of objects x , y ∈ C, a map of hom-sets:

Fx ,y : C(x , y) D(F (x),F (y))

These data must satisfy:
I The maps Fx ,y must be functorial, that is, for any pair of morphisms g : x → y

and f : y → z , we must have:

Fy ,z(f ) ◦ Fx ,y (g) = Fx ,z(f ◦ g).

Note: Often, given a morphism f : x → y , we write F (f ) to denote the morphism
Fx ,y (f ).

I The assignment must be unital, that is, given any object x in C, we must have

Fx ,x(idx) = idF (x).



Functor Examples
I There is a functor U : Ab→ Set (the “forgetful functor”) which takes an abelian

group (G ,+, 0) to its underlying set of elements G , and takes a group
homomorphism to its underlying set-function.

I Given an R module N, we can define a functor −⊗R N : R-Mod→ R-Mod which
takes a module M to the module M ⊗R N and an R-linear map ϕ : M → M ′ to
the R-linear map ϕ⊗R 1 : M ⊗ N → M ′ ⊗ N.

I Given any category C and some object c ∈ Ob(C), we can define the functor
(called the “representable presheaf”):

hc : Cop → Set

x 7→ C(x , c)

(f ∈ Cop(x , y)) 7→ (− ◦ f : C(y , c)→ C(x , c)).

I Given any two categories C and D and a distinguished object d ∈ Ob(D), we can
define the constant functor d : C→ D which sends every object in C to d and
every morphism in C to the identity morphism on d .



Exercise
Show that given a group G , any functor F : BG → Set is equivalent to a choice of a
set F (∗) and a G -action on that set.

Exercise
Show that functors preserve isomorphisms.

Remark
Given any category C, there exists an identity functor IdC : C→ C which takes each
object and each morphism to itself.

Exercise
Given functors G : C→ D and F : D→ E, define a suitable notion of the composition
F ◦ G : C→ E. Show your construction is associative and unital w.r.t. the identity
functor.

Remark
There exists a category Cat, whose objects are (small) categories and whose
morphisms are functors.



Natural Transformation Defintion

Let F and G be functors C→ D. Then a natural transformation η from F to G ,
denoted by η : F ⇒ G , is a collection

{ηc : F (c)→ G (c)}c∈Ob(C)

of morphisms in D, such that for every morphism f : x → y in C, the following
diagram commutes:

F (x) F (y)

G (x) G (y)

F (f )

G(f )

ηx ηy

In other words, it must be true that ηy ◦ F (f ) = G (f ) ◦ ηx . We call this diagram the
naturality square for f .



Natural Transformation Examples

1. Given a group G and functors X ,Y : BG ⇒ Set, a natural transformation
η : X ⇒ Y is the data of an equivariant map η∗ : X (∗)→ Y (∗).

2. Given any functor F : C→ D, there is an “identity” natural transformation
idF : F ⇒ F whose component at x ∈ Ob(C) is the identity morphism
idF (x) : F (x)→ F (x) in D.

3. Given functors F ,G ,H : C→ D and natural transformations µ : F ⇒ G ,
η : G ⇒ H, we can define their “composition” η ◦ µ : F ⇒ H whose component
at c ∈ Ob(C) is given by

(η ◦ µ)c := ηc ◦ µc .

Exercise
Check that the above construction indeed defines a natural transformation, and that
this composition operation is associative and unital w.r.t. the identity natural
transformation.



Remark
Given categories C and D, there exists a category Fun(C,D) (sometimes just denoted
[C,D] or DC) whose objects are functors C→ D and morphisms are natural
transformations between functors.

Exercise
Show that the isomorphisms in Fun(C,D) are the natural isomorphisms, i.e., those
natural transformations η such that ηc is an isomorphism in D for every c ∈ Ob(C).

Example (The Yoneda Embedding)

Given a category C, the Yoneda Embedding is the functor

Y : C→ Fun(Cop, Set)

c 7→ hc := C(−, c).

Exercise
How can we define the Yoneda embedding on morphisms in C? “Hint”: a morphism
f : x → y in C needs to be sent to a natural transformation η : C(−, x)⇒ C(−, y).



Initial & Terminal Objects

Definition
An initial object in a category C is an object i ∈ Ob(C) such that for every object
x ∈ Ob(C), there exists precisely one morphism i → x .
In other words, i is initial if C(i , x) is a singleton set for all objects x in C.

Definition
A terminal object in a category C is an object t ∈ Ob(C) such that C(x , t) is a
singleton set for all objects x in C.

Remark
An object in C is an initial object if and only if it is a terminal object in Cop, and
vice-versa.



Initial & Terminal Objects Cont.

Exercise
In a category C, the initial object (resp. terminal object), if it exists, is “unique up to
unique isomorphism.” In other words, that means if x and y are both initial (resp.
terminal) objects in C, then there exists a unique isomorphism x → y .

Examples

The initial object in Set is the empty set ∅, while “the” terminal object is the singleton
set {∗}, often just denoted ∗.
The initial object and the terminal object in Ab coincide, namely, it is the trivial group.

Given a nontrivial group G , the category BG has no initial or terminal object.

Remark
If a preorder (P,≤) has a unique maximal element, then that maximal element is the
terminal object in CP. Similarly, if it has a unique minimal element, then that minimal
element is the initial object in CP.



(Co)limits

Definition
Let I be a small category and F : I→ C be a functor. In the context of (co)limits, we
call F a diagram of shape I, or just a diagram, in C.

Definition
A cone under F , or a cocone, is a pair (c , η), where c ∈ Ob(C) is an object and
η : F ⇒ c is a natural transformation.

Definition
Once again, let F be a diagram of shape I in C. Then a cone over F , or just a cone, is
a pair (c , η), where c ∈ Ob(C) and η : c ⇒ F is a natural transformation.



Cone picture
Typically, we imagine I is a very small category (even finite). Maybe I looks something
like this:

Then if (c , η) is a cone under F , we have the following image in C.

And if (c , η) is a cone over F , we have the following image in C.



(Co)limits Continued

Definition
Given a diagram F of shape I in a category C (so a functor F : I→ C) and two
cocones (c , η) and (d , µ), a morphism of cocones is a morphism f ∈ C(c , d) such that
for all x ∈ Ob(C), µx = f ◦ ηx .



(Co)limits Continued

Definition
Given a diagram F of shape I in a category C (so a functor F : I→ C) and two
cocones (c , η) and (d , µ), a morphism of cocones is a morphism f ∈ C(c , d) such that
for all x ∈ Ob(C), µx = f ◦ ηx .



(Co)limits Continued

Definition
Given a diagram F of shape I in a category C (so a functor F : I→ C) and two
cocones (c , η) and (d , µ), a morphism of cocones is a morphism f ∈ C(c , d) such that
for all x ∈ Ob(C), µx = f ◦ ηx .



(Co)limits Continued

Definition
Given a diagram F of shape I in a category C and two cones (c , η), (d , µ), a morphism
of cones is a morphism f ∈ C(c , d) such that for all x ∈ Ob(C), µx ◦ f = ηx .

Definition
Given a diagram F of shape I in a category C, define ConeC(F ) to be the category
whose objects are cones under F (cocones) and morphisms are morphisms of cocones,
and define ConeC(F ) to be the category whose objects are cones over F (cones) and
morphisms are morphisms of cones.

Definition
Given a diagram F of shape I in a category C, the colimit cone for F is the initial
object in ConeC(F ) (if it exists), and the limit cone for F is the terminal object in
ConeC(F ) (if it exists).

If (c , η) is a colimit cone for F , then we call the object c the colimit of F .
Similarly, if (c , η) is a limit cone for F , then we call the object c the limit of F .



The colimit cone of F is the “shallowest” cone under F .

The limit cone of F is the “shallowest” cone over F .



Extra

Exercise
Given a functor F : C→ D, how can we define a functor F op : Cop → Dop?
Using that definition, given a natural transformation η : F ⇒ G , how can we define a
natural transformation ηop : G op ⇒ F op?

Exercise
Let F be a diagram of shape I in a category C. Then the following are equivalent:

I (c , η) is a colimit cone for F .

I (c , ηop) is a limit cone for the functor F op : Iop → Cop.

Hence, the limit is the dual of the colimit. In other words, the definition of a limit can
be obtained by reversing all the arrows in the definition of the colimit.



Examples of (Co)limits in Set

1. Co(limit) of the empty diagram

2. Co(limit) of a discrete diagram

3. Co(limit) of a (co)span

4. Co(limit) of paralell morphisms

5. Co(limit) of two isomorphic objects



Direct Limits

Definition (Directed Set)

A directed (I ,≤) set is a preorder (so ≤ is a reflexive and transitive relation on I ) with
the additional property that every pair of elements has an upper bound, that is, if
a, b ∈ I , then there must exist some c ∈ I with a ≤ c and b ≤ c .

Definition (Direct System)

Given a directed set (I ,≤), a direct system on C is a functor F : CI → C (a diagram of
shape CI in C). We often denote a direct system as a family of objects and morphisms
〈Ai , fij〉 indexed by I , where the fij ’s are viewed like “inclusions.”

Definition (Direct Limit)

Given a direct system 〈Ai , fij〉 in a category C (so the data of a functor F : CI → C).,
the direct limit of the system, denoted by

lim−→Ai ,

is the colimit (!) of the functor F .



Direct Limits Cont.

Example

An infinite chain of ideals p1 ⊆ p2 ⊆ p3 ⊆ · · · in a ring A determines a direct system
F : CN→ A-Mod (How?).
The direct limit of this system (i.e., the colimit of F ) is the union

⋃∞
i=1 pi .

In a lot of concrete categories, direct limits “act like unions.”



Inverse Limits

Definition (Inverse Limit)

Given a directed set (J,≤) and a functor F : CJop → C, the limit of F is often called
an inverse limit, and is denoted

lim←−Aj ,

where the Aj denote the objects in the image of F .
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