

Category Theory

Categories, functors, natural transformations, and (co)limits

Isaiah Dailey

UC San Diego

July 6, 2022

Category Definition

A category C consists of the following data

- A set $Ob(\mathcal{C})$, whose elements are called the *objects* of \mathcal{C} .
- ► For any two objects $x, y \in Ob(\mathcal{C})$, a set $\mathcal{C}(x, y)$ (also denoted $Hom_{\mathcal{C}}(x, y)$) of morphisms from x to y. We will often draw a morphism $f \in \mathcal{C}(x, y)$ as an arrow

$$
f: x \longrightarrow y
$$

We call $\mathcal{C}(x, y)$ a hom-set.

For every triple of objects x, y, and z in $Ob(\mathcal{C})$, a function

$$
- \circ - : \mathcal{C}(y, z) \times \mathcal{C}(x, y) \to \mathcal{C}(x, z)
$$

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

called composition.

For every objects x in Ob(C), a distinguished morphism $id_x \in C(x, x)$ called the identity morphism on x.

Category Definition (Cont.)

Together, these data must satisfy:

 \triangleright The identity morphism is unital w.r.t. composition. In other words, given a morphism $f \in \mathcal{C}(x, y)$, it must be true that

$$
f\circ \mathrm{id}_x=f=\mathrm{id}_y\circ f.
$$

► Composition must be associative. In other words, given morphisms $f : z \rightarrow w$, $g: v \rightarrow z$, and $h: x \rightarrow v$, it must be true that:

$$
f\circ (g\circ h)=(f\circ g)\circ h.
$$

KORKARYKERKER OQO

WARNINGS

- I A "morphism" is to a hom-set as a vector is to a vector space. They are nothing more than elements of hom-sets!
- \triangleright Morphisms are *not* functions (at least in general).
- \blacktriangleright Hom-sets, and by extension morphisms, are *not* unique! It is possible to have two equal hom-sets $\mathcal{C}(x, y) = \mathcal{C}(a, b)$, even if $x \neq a$ or $y \neq b!$

KORKARYKERKER OQO

Category Examples

- 1. The category Set, whose objects are sets and morphisms are regular set functions.
- 2. The category CRing, whose objects are commutative rings and morphisms are ring morphisms.
- 3. The category Ab, whose objects are abelian groups and morphisms are group homomorphisms.
- 4. Given a commutative ring R , we can define the category R -Mod, whose objects are R-modules and morphisms are R-linear maps.
- 5. The category Top whose objects are topological spaces and morphisms are continuous maps.
- 6. The category Man whose objects are smooth manifolds and morphisms are smooth maps.
- 7. The category Ord whose objects are preorders and morphisms are monotone (order-preserving) maps.
- \triangleright None of the previous examples are actually categories, by how I've defined it.
- \blacktriangleright There is no "set of all sets".
- In Solution: we have a notion of "small" vs. "big" sets, where the set of all small sets is a big set.
- \triangleright Set is really the category of all small sets. Similarly, Ab is the category whose objects are small abelian groups, etc.

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

- \triangleright Definition: We say a category C is small if $Ob(\mathcal{C})$ is a small set.
- \triangleright None of the previously listed categories are small.

Category Examples Cont.

- 1. Given a category $\mathcal C$, we can define a category $\mathcal C^{\mathrm{op}}$ by $\mathrm{Ob}(\mathcal C^{\mathrm{op}}):=\mathrm{Ob}(\mathcal C)$ and $C^{op}(x, y) := C(y, x)$. Then composition in C^{op} is simply composition in C.
- 2. Given a group (G, \cdot, e) , we can define a category BG with $Ob(BG) := \{*\}$, and $BG(*, *) := G$. Composition is defined by $g \circ h := g \cdot h$ (so that e is the identity morphism on ∗).
- 3. Given a preorder (P, \leq) (so \leq is a transitive and reflexive relation on P), we can define a category CP with $Ob(CP) := P$ and:

$$
CP(x,y) := \begin{cases} \{*\} & x \leq y \\ 0 & \text{else.} \end{cases}
$$

Exercise

Show that there is only one possible way to define composition in \mathcal{CP} , and that it indeed gives an associative, unital composition operation.

Category Examples Cont.

4. Given two categories C and D, we can define the *product category* $C \times D$ by $Ob(\mathcal{C} \times \mathcal{D}) := Ob(\mathcal{C}) \times Ob(\mathcal{D})$ and

$$
(\mathcal{C} \times \mathcal{D})((c,d),(c',d')) := \mathcal{C}(c,c') \times \mathcal{D}(d,d').
$$

Then composition and identities are defined in the obvious way.

5. Let (X, \mathcal{U}) be a topological space. Then we can consider the category $\text{Op}(X)$ whose objects are open sets (so $Ob(Op(X)) := U$) and morphisms are the inclusions of sets.

Exercise

Show that given a topological space (X, \mathcal{U}) , that $\text{Op}(X)$ is "the same as" the category CU, when viewing (\mathcal{U}, \subseteq) as a poset.

Definition

Given a category C, we call a morphism $f: x \rightarrow y$ an *isomorphism* if there exists a morphism $f^{-1}: y \to x$ such that $f^{-1} \circ f = \mathrm{id}_x$ and $f \circ f^{-1} = \mathrm{id}_y$. Furthermore, we say that x and y are *isomorphic* in this case, and write $x \cong y$.

Examples

In Set, the isomorphisms are bijections. In Ab, the isomorphisms are precisely isomorphisms of groups. In Top, the isomorphisms are homeomorphisms.

Exercise

Prove that given a group G, the category BG is a groupoid, that is, a category in which every morphism is an isomorphism.

Understand the sentence "A group is a groupoid with a single object."

Exercise

Understand the sentence "A monoid is a category with a single object." This justifies calling a category a "monoidoid."

Functor Definition

Let C and D be categories. A functor $F: \mathcal{C} \to \mathcal{D}$ from C to D consists of the following data:

- A map of sets $F: Ob(\mathcal{C}) \to Ob(\mathcal{D})$.
- For every pair of objects $x, y \in C$, a map of hom-sets:

$$
F_{x,y} : \mathfrak{C}(x,y) \longrightarrow \mathfrak{D}(F(x),F(y))
$$

These data must satisfy:

I The maps $F_{x,y}$ must be functorial, that is, for any pair of morphisms $g: x \to y$ and $f : y \rightarrow z$, we must have:

$$
F_{y,z}(f)\circ F_{x,y}(g)=F_{x,z}(f\circ g).
$$

Note: Often, given a morphism $f : x \rightarrow y$, we write $F(f)$ to denote the morphism $F_{x,y}(f)$.

In The assignment must be *unital*, that is, given any object x in C, we must have

$$
F_{x,x}(\mathrm{id}_x)=\mathrm{id}_{F(x)}.
$$

KOD KAD KED KED DRA

Functor Examples

- \triangleright There is a functor $U:$ Ab \rightarrow Set (the "forgetful functor") which takes an abelian group $(G, +, 0)$ to its underlying set of elements G, and takes a group homomorphism to its underlying set-function.
- \triangleright Given an R module N, we can define a functor $-\otimes_R N$: R-Mod \rightarrow R-Mod which takes a module M to the module $M\otimes_R N$ and an R -linear map $\varphi:M\to M'$ to the R-linear map $\varphi \otimes_R 1 : M \otimes N \to M' \otimes N$.
- ► Given any category C and some object $c \in Ob(\mathcal{C})$, we can define the functor (called the "representable presheaf"):

$$
h_c: \mathbb{C}^{\mathrm{op}} \to \mathsf{Set} \\ x \mapsto \mathbb{C}(x, c) \\ (f \in \mathbb{C}^{\mathrm{op}}(x, y)) \mapsto (- \circ f : \mathbb{C}(y, c) \to \mathbb{C}(x, c)).
$$

► Given any two categories C and D and a distinguished object $d \in Ob(\mathcal{D})$, we can define the constant functor $d: \mathcal{C} \to \mathcal{D}$ which sends every object in \mathcal{C} to d and every morphism in C to the identity morphism on d . 4 0 > 4 4 + 4 = + 4 = + = + + 0 4 0 +

Exercise

Show that given a group G, any functor $F : BG \rightarrow Set$ is equivalent to a choice of a set $F(*)$ and a G-action on that set.

Exercise

Show that functors preserve isomorphisms.

Remark

Given any category C, there exists an identity functor $\text{Id}_{\mathcal{C}} : \mathcal{C} \to \mathcal{C}$ which takes each object and each morphism to itself.

Exercise

Given functors $G: \mathcal{C} \to \mathcal{D}$ and $F: \mathcal{D} \to \mathcal{E}$, define a suitable notion of the composition $F \circ G : \mathcal{C} \to \mathcal{E}$. Show your construction is associative and unital w.r.t. the identity functor.

Remark

There exists a category Cat, whose objects are (small) categories and whose morphisms are functors.KO KA KO KE KA EK NE KO KO

Natural Transformation Defintion

Let F and G be functors $C \to \mathcal{D}$. Then a *natural transformation n* from F to G. denoted by $\eta : F \Rightarrow G$, is a collection

$$
\{\eta_c : F(c) \to G(c)\}_{c \in \mathrm{Ob}(\mathcal{C})}
$$

of morphisms in D, such that for every morphism $f: x \rightarrow y$ in C, the following diagram commutes:

$$
F(x) \xrightarrow{F(f)} F(y)
$$

\n
$$
\eta_x \downarrow \qquad \qquad \downarrow \eta_y
$$

\n
$$
G(x) \xrightarrow{G(f)} G(y)
$$

In other words, it must be true that $\eta_V \circ F(f) = G(f) \circ \eta_X$. We call this diagram the naturality square for f.

Natural Transformation Examples

- 1. Given a group G and functors $X, Y : BG \rightrightarrows Set$, a natural transformation $\eta: X \Rightarrow Y$ is the data of an equivariant map $\eta_*: X(*) \to Y(*)$.
- 2. Given any functor $F: \mathcal{C} \to \mathcal{D}$, there is an "identity" natural transformation $\mathrm{id}^\digamma:F\Rightarrow\digamma$ whose component at $x\in\mathrm{Ob}(\mathcal{C})$ is the identity morphism $\mathrm{id}_{\mathcal{F}(x)} : \mathcal{F}(x) \to \mathcal{F}(x)$ in \mathcal{D} .
- 3. Given functors $F, G, H: \mathcal{C} \to \mathcal{D}$ and natural transformations $\mu: F \Rightarrow G$, $\eta: G \Rightarrow H$, we can define their "composition" $\eta \circ \mu: F \Rightarrow H$ whose component at $c \in Ob(\mathcal{C})$ is given by

$$
(\eta \circ \mu)_{c} := \eta_{c} \circ \mu_{c}.
$$

Exercise

Check that the above construction indeed defines a natural transformation, and that this composition operation is associative and unital w.r.t. the identity natural transformation.

Remark

Given categories C and D, there exists a category $Fun(\mathcal{C}, \mathcal{D})$ (sometimes just denoted $[\mathfrak{C},\mathfrak{D}]$ or $\mathfrak{D}^\mathfrak{C})$ whose objects are functors $\mathfrak{C}\to\mathfrak{D}$ and morphisms are natural transformations between functors.

Exercise

Show that the isomorphisms in $Fun(\mathcal{C}, \mathcal{D})$ are the *natural isomorphisms*, i.e., those natural transformations η such that η_c is an isomorphism in D for every $c \in Ob(\mathcal{C})$.

Example (The Yoneda Embedding)

Given a category C, the Yoneda Embedding is the functor

 $\mathcal{Y}: \mathcal{C} \to \text{Fun}(\mathcal{C}^{\text{op}}, \textsf{Set})$ $c \mapsto h_c := \mathcal{C}(-, c).$

Exercise

How can we define the Yoneda embedding on morphisms in C? "Hint": a morphism $f: x \to y$ in C needs to be sent to a natural transformation $\eta: \mathcal{C}(-, x) \to \mathcal{C}(-, y)$.

Initial & Terminal Objects

Definition

An *initial object* in a category C is an object $i \in Ob(\mathcal{C})$ such that for every object $x \in Ob(\mathcal{C})$, there exists precisely one morphism $i \to x$. In other words, *i* is initial if $C(i, x)$ is a singleton set for all objects x in C.

Definition

A terminal object in a category C is an object $t \in Ob(\mathcal{C})$ such that $\mathcal{C}(x,t)$ is a singleton set for all objects x in \mathcal{C} .

Remark

An object in $\mathfrak C$ is an initial object if and only if it is a terminal object in $\mathfrak C^{\rm op}$, and vice-versa.

Initial & Terminal Objects Cont.

Exercise

In a category \mathcal{C} , the initial object (resp. terminal object), if it exists, is "unique up to unique isomorphism." In other words, that means if x and y are both initial (resp. terminal) objects in C, then there exists a unique isomorphism $x \to y$.

Examples

The initial object in Set is the empty set \emptyset , while "the" terminal object is the singleton set {∗}, often just denoted ∗.

The initial object and the terminal object in Ab coincide, namely, it is the trivial group. Given a nontrivial group G, the category BG has no initial or terminal object.

Remark

If a preorder (P, \leq) has a unique maximal element, then that maximal element is the terminal object in CP. Similarly, if it has a unique minimal element, then that minimal element is the initial object in CP.

(Co)limits

Definition

Let I be a small category and $F : \mathcal{I} \to \mathcal{C}$ be a functor. In the context of (co)limits, we call F a diagram of shape I, or just a diagram, in \mathcal{C} .

Definition

A cone under F, or a cocone, is a pair (c, η) , where $c \in Ob(\mathcal{C})$ is an object and η : $F \Rightarrow c$ is a natural transformation.

Definition

Once again, let F be a diagram of shape $\mathcal I$ in $\mathcal C$. Then a *cone over* F, or just a *cone*, is a pair (c, η) , where $c \in Ob(\mathcal{C})$ and $\eta : c \Rightarrow F$ is a natural transformation.

Cone picture

Typically, we imagine $\mathcal I$ is a very small category (even finite). Maybe $\mathcal I$ looks something like this:

Then if (c, η) is a cone under F, we have the following image in C.

And if (c, η) is a cone over F, we have the following image in C.

Definition

Given a diagram F of shape J in a category C (so a functor $F : J \to C$) and two cocones (c, η) and (d, μ) , a morphism of cocones is a morphism $f \in \mathcal{C}(c, d)$ such that for all $x \in Ob(\mathcal{C})$, $\mu_x = f \circ \eta_x$.

→ ●

Definition

Given a diagram F of shape $\mathcal I$ in a category $\mathcal C$ (so a functor $F : \mathcal I \to \mathcal C$) and two cocones (c, η) and (d, μ) , a morphism of cocones is a morphism $f \in \mathcal{C}(c, d)$ such that for all $x \in Ob(\mathcal{C})$, $\mu_x = f \circ \eta_x$.

Definition

Given a diagram F of shape $\mathcal I$ in a category $\mathcal C$ (so a functor $F : \mathcal I \to \mathcal C$) and two cocones (c, η) and (d, μ) , a morphism of cocones is a morphism $f \in \mathcal{C}(c, d)$ such that for all $x \in Ob(\mathcal{C})$, $\mu_x = f \circ \eta_x$.

Definition

Given a diagram F of shape J in a category C and two cones (c, η) , (d, μ) , a morphism of cones is a morphism $f \in \mathcal{C}(c, d)$ such that for all $x \in Ob(\mathcal{C})$, $\mu_x \circ f = \eta_x$.

Definition

Given a diagram F of shape J in a category C, define Cone_C(F) to be the category whose objects are cones under F (cocones) and morphisms are morphisms of cocones, and define Cone $^{\mathbb{C}}(F)$ to be the category whose objects are cones over F (cones) and morphisms are morphisms of cones.

Definition

Given a diagram F of shape I in a category C, the *colimit cone* for F is the initial object in Cone_C(F) (if it exists), and the *limit cone* for F is the terminal object in Cone ${}^{\mathfrak{C}}(F)$ (if it exists).

If (c, η) is a colimit cone for F, then we call the object c the colimit of F. Similarly, if (c, η) is a limit cone for F, then we call the object c the limit of F. The colimit cone of F is the "shallowest" cone under F .

The limit cone of F is the "shallowest" cone over F .

Extra

Exercise

Given a functor $F: \mathcal{C} \to \mathcal{D}$, how can we define a functor $F^{\rm op}: \mathcal{C}^{\rm op} \to \mathcal{D}^{\rm op}$? Using that definition, given a natural transformation $\eta : F \Rightarrow G$, how can we define a natural transformation $\eta^{\rm op}: {\sf G}^{\rm op}\Rightarrow {\sf F}^{\rm op} ?$

Exercise

Let F be a diagram of shape J in a category C. Then the following are equivalent:

•
$$
(c, \eta)
$$
 is a colimit cone for F .

 \blacktriangleright (c, η^{op}) is a limit cone for the functor $F^{\text{op}} : \mathcal{I}^{\text{op}} \to \mathcal{C}^{\text{op}}$.

Hence, the limit is the *dual* of the colimit. In other words, the definition of a limit can be obtained by reversing all the arrows in the definition of the colimit.

Examples of (Co)limits in Set

- 1. Co(limit) of the empty diagram
- 2. Co(limit) of a discrete diagram
- 3. Co(limit) of a (co)span
- 4. Co(limit) of paralell morphisms
- 5. Co(limit) of two isomorphic objects

KORK ERKER ADA ADA KORA

Direct Limits

Definition (Directed Set)

A directed (I, \leq) set is a *preorder* (so \leq is a reflexive and transitive relation on I) with the additional property that every pair of elements has an upper bound, that is, if a, $b \in I$, then there must exist some $c \in I$ with $a \leq c$ and $b \leq c$.

Definition (Direct System)

Given a directed set (I, \leq) , a direct system on C is a functor $F : Cl \to \mathcal{C}$ (a diagram of shape CI in C). We often denote a direct system as a family of objects and morphisms $\langle A_i, f_{ij} \rangle$ indexed by I, where the f_{ij} 's are viewed like "inclusions."

Definition (Direct Limit)

Given a direct system $\langle A_i, f_{ij}\rangle$ in a category $\mathfrak C$ (so the data of a functor $\mathcal F: \mathsf{C} \mathsf I \to \mathfrak C).$ the direct limit of the system, denoted by

$$
\varinjlim A_i,
$$

is the **colimit** $(!)$ of the functor F .

Example

An infinite chain of ideals $\mathfrak{p}_1 \subseteq \mathfrak{p}_2 \subseteq \mathfrak{p}_3 \subseteq \cdots$ in a ring A determines a direct system $F: \mathbb{CN} \to A\text{-Mod (How?)}$.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

The direct limit of this system (i.e., the colimit of F) is the union $\bigcup_{i=1}^{\infty} \mathfrak{p}_i$. In a lot of concrete categories, direct limits "act like unions."

Inverse Limits

Definition (Inverse Limit)

Given a directed set (J, \leq) and a functor $F : C\mathcal{J}^{\mathrm{op}} \to \mathcal{C}$, the limit of F is often called an inverse limit, and is denoted

 $\varprojlim A_j,$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

where the A_i denote the objects in the image of F .

Resources:

- 1. nLab
- 2. Wikipedia
- 3. Emily Riehl, Category Theory in Context
- 4. Notes by Walker H. Stern (UVA Postdoc)

K ロ ▶ K 레 ▶ K 코 ▶ K 코 ▶ 『코 │ ◆ 9 Q Q ↓