
THE STANDARD MODEL STRUCTURE ON SPACES

ISAIAH DAILEY

Contents

1. Preliminaries 1
2. The Model Structure on Topological Spaces 11

This document follows Mark Hovey’s Model Categories, and its intention is to reproduce the
proof of the standard model structure on topological spaces in explicit detail. The main result is
proven in Theorem 2.3.

1. Preliminaries

We work with von Neumann ordinals, i.e., an ordinal is a transitive set of ordinals (this defi-
nition is not circular, the empty set is an ordinal which we call “0”). In the following discussion,
let α and β be ordinals. We write α + 1 to denote the successor ordinal α ∪ {α}. We write
α < β to mean α ∈ β, and α ≤ β denotes any of the equivalent conditions: (1) α < β or
α = β, (2) α ∈ β + 1, (3) α ⊆ β. Given a collection of ordinals B, we write supB or supβ∈B β
to denote the ordinal

⋃
β∈B β. We define the sum of ordinals α and β recursively: α + 0 := α,

α+(β+1) := (α+β)+1, and α+β := supδ<β(α+δ) when β is a limit ordinal. Note that addition
of ordinals is not commutative, but it is associative, and continuous in its right argument: given
an ordinal α and a collection of ordinals B, α + supB = supβ∈B(α + β). We say an ordinal λ
is a limit ordinal if either of the following equivalent conditions hold: (1) λ = supβ<λ β or (2)
λ ̸= β + 1 for all ordinals β. Note that 0 is a limit ordinal under our definition. We may regard
an ordinal α as a poset category, in which case the colimit in α is given by the supremum. We
let Ord denote the poset category of all (small) ordinals, so there exists a unique arrow α→ β if
α ≤ β. Given a set X, we write |X| to denote its cardinality, i.e., |X| is the least ordinal α such
that there exists a bijection between α and X. A cardinal number is an an ordinal which is the
cardinality of some set X.

Definition 1.1 (Hovey Definition 2.1.1). Suppose C is a cocomplete category, and λ is an ordinal.
A λ-sequence in C is a colimit-preserving functor X : λ→ C, commonly written as

X0 → X1 → · · · → Xβ → · · · .
Since X preserves colimits, for all limit ordinals γ < λ, the arrows Xα → Xγ for α < γ form
a colimit cone under {Xα}α<γ . We refer to the map X0 → colimβ<λ Xβ as the composition of
the λ-sequence. Given a collection D of morphisms in C such that every map Xβ → Xβ+1 for
β + 1 < λ is in D, we refer to the composition X0 → colimβ<λ Xβ as a transfinite composition of
arrows in D.1
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1To be more precise, there may be different (isomorphic) choices of colimit colimβ<γ Xβ , which give rise to

different choices of composition X0 → colimβ<γ Xβ . Thus, the composition of a λ-sequence is only unique up to

composition by a unique isomorphism.
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Of particular importance to us will be collections of arrows which are closed under transfinite
composition, i.e., collections D for which given any ordinal λ and λ-sequence X of arrows in D,
for any choice of colimit colimX, the canonical map X0 → colimX is also in D. We prove the
following useful result about when a class of morphisms is closed under transfinite composition:

Lemma 1.2. Let C be a category, and D a collection of arrows in C satisfying the following
properties: D is closed under composition with isomorphisms, and given an ordinal λ and a λ-
sequence X : λ→ C of arrows in D (so Xβ → Xβ+1 belongs to D for all β+1 < λ), if we then get
then get for free that Xα → Xβ belongs to D for all α ≤ β < λ, then D is closed under transfinite
composition.

Proof. Let λ be an ordinal, and X : λ→ C a λ-sequence of arrows in D. First, suppose λ = µ+1
is a successor ordinal. Since we know that any transfinite composition of X may be obtained from
another by composing with an isomorphism andD is closed under composition with isomorphisms,
it suffices to show there exists some transfinite composition of X belonging to D. We know
supβ<λ β = supβ<µ+1 β = µ, and X is colimit preserving, so that Xµ is a colimit of the diagram
X via the arrows Xα → Xµ for α < λ = µ+1. But we know in particular that X0 → Xµ belongs
to D, so we are done.

Conversely, suppose λ is a limit ordinal. Let j : X ⇒ Xλ be a colimit cone for X. We may
use j to extend X to a (λ + 1)-sequence in the obvious way (so for α < λ, the structure map
Xα → Xλ is given by j and the arrow Xλ → Xλ is the identity, as is necessary). Further note
that X is still a sequence of arrows in D, as given β + 1 < λ+ 1, so β + 1 ≤ λ, it is not possible
that β + 1 = λ as λ is a limit ordinal, in which case we know the map Xβ → Xβ+1 belongs to D

as β + 1 < λ. Hence, unravelling definitions and applying the asserted property of D, we get for
free that j0 : X0 → Xλ belongs to D. □

Lemma 1.3. Given a cocomplete category C and a collection D of arrows in C, if D is closed
under transfinite composition, then given any limit ordinal λ and λ-sequence X : λ → C, for all
α < λ the canonical map Xα → colimX belongs to D.

Proof Sketch. Let α < λ, and fix a colimit cone j : X ⇒ colimX. Define S := {β : α ≤ β ≤ λ} ⊆
λ + 1. Define a map ϕ : S → Ord via transfinite recursion. Let ϕ(α) = 0. Supposing ϕ(β) has
been defined, let ϕ(β + 1) = ϕ(β) + 1. Finally, supposing α < γ ≤ λ is a limit ordinal and ϕ(β)
has been defined for α ≤ β < γ, define ϕ(γ) = supα≤β<γ ϕ(β). It is straightforward to verify
that ϕ is order preserving, sends limit ordinals to limit ordinals, and satisfies α+ϕ(β) = β for all
α ≤ β ≤ λ.

Now, construct a ϕ(λ)-sequence Y : ϕ(λ) → C by Yβ := Xα+β , and given β ≤ β′ < ϕ(λ),
define the map Yβ → Yβ′ to be the arrow Xα+β → Xα+β′ for X. Checking that Y is functorial
and colimit-preserving follows directly from the fact that X is functorial and colimit-preserving.
Then it can be seen that the jα+β ’s for 0 ≤ β < ϕ(λ) restrict to a colimit cone under Y . Since Y
is a ϕ(λ)-sequence in D and D is closed under transfinite compositions, it follows that jα ∈ D, as
desired. □

Definition 1.4 (Hovey Definition 2.1.2). Let γ be a cardinal. An ordinal α is γ-filtered if it is a
limit ordinal and, if A ⊆ α and |A| ≤ γ, then supA < α.

Given a cardinal γ, a γ-filtered category C is one such that any diagram D→ C has a cocone
when D has < γ arrows. A catgory is just “filtered” if it is ω-filtered, i.e., if every finite diagram
in C admits a cocone. Note that an ordinal α is γ-filtered precisely when it is γ-filtered as a
category, and in particular every ordinal is ω-filtered.

Definition 1.5 (Hovey Definition 2.1.3). Suppose C is a comcomplete category, D ⊆ MorC is
some collection of morphisms of C, A is an object of C, and κ is a cardinal. We say that A is
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κ-small relative to D if, for all κ-filtered ordinals λ and all λ-sequences

X0 → X1 → · · · → Xβ → · · ·

such that each map Xβ → Xβ+1 is in D for β + 1 < λ, the canonical map of sets

colim
β<λ

C(A,Xβ)→ C(A, colim
β<λ

Xβ)

is an isomorphism. We say that A is small relative to D if it is κ-small relative to D for some κ.
We say that A is small if it is small relative to C itself.

Definition 1.6 (Hovey Definition 2.1.4). Suppose C is a cocomplete category, D is a collection
of morphisms of C, and A is an object of C. We say that A is finite relative to D if A is κ-small
relative to D for some finite cardinal κ. We say A is finite if it is finite relative to C itself. In
particular, since every limit ordinal is κ-filtered for any finite cardinal κ, for an object A to be
finite relative to D, maps from A must commute with colimits of arbitrary λ-sequences for every
limit ordinal λ.

Remark 1.7. Recall that given a small category D and a functor F : D→ Set, we may explicitly
construct the colimit of F as the set

colimF :=

(∐
d∈D

F (d)

)
/ ∼,

where the equivalence relation ∼ is generated by

((x ∈ F (d)) ∼ (x′ ∈ F (d′))) if (∃(f : d→ d′) with Ff(x) = x′).

In particular, if D is a filtered category then the resulting relation can be described as follows:

((x ∈ F (d)) ∼ (x′ ∈ F (d′))) iff (∃ d′′, (f : d→ d′′), (g : d′ → d′′) with Ff(x) = Fg(x′)).

Then the colimit cone η : F ⇒ colimF is defined by ηd(x) = [x] for d ∈ D and x ∈ F (d), where [x]
denotes the equivalence class of x in colimF . Given a cone ε : F ⇒ Y under F , the unique map
colimF → Y maps an equivalence class [x] represented by an element x ∈ F (d) to the element
εd(x).

Similarly, we may explicitly construct the limit of a functor F : D→ Set as the subset

limF =

{
(xd)d∈D ∈

∏
d∈D

F (d) : ∀(di
α−→ dj) ∈ D, F (α)(xdi) = xdj

}
,

in which case the limit cone is simply the restriction of the projection maps for
∏

d∈D F (d) to
limF .

Now we unravel what the “canonical map” of Definition 1.5 is. Suppose we are given a cocom-
plete category C, an element A ∈ C, an ordinal λ, and a λ-sequence X : λ→ C. For α ≤ β < λ, let
ια,β be the map Xα → Xβ . Let η : X ⇒ colimX be the colimit cone. By whiskering the colimit
cone along the functor C(A,−), we get a cone C(A, η) : {C(A,Xβ)}β<λ ⇒ C(A, colimX). Then if

we let ε : {C(A,Xβ)}β<λ ⇒ colimβ<λ C(A,Xβ) be the colimit cone, the universal property of the

colimit gives us the canonical map ℓ : colimβ<λ C(A,Xβ) → C(A, colimX), so that the following
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diagram commutes:

C(A,X0) C(A,X1) · · · C(A,Xβ) · · ·

colimβ<λ C(A,Xβ)

C(A, colimX)

(ι0,1)∗ (ι1,2)∗ (ιβ,β+1)∗

εβε1

ε0

(ηβ)∗

ℓ

(η1)∗
(η0)∗

In particular, by Remark 1.7, we know elements of colimβ<λ C(A,Xβ) are equivalence classes of
arrows f : A → Xβ for β < λ under the relation [f : A → Xβ ] = [g : A → Xβ′ ] iff there exists
β′′ ≥ β, β′ with ιβ,β′′ ◦f = ιβ′,β′′ ◦ g, and the map εβ sends an arrow f ∈ C(A,Xβ) to the element
[f ]. Then it follows that ℓ([f : A→ Xβ ]) = ηβ ◦ f . Thus, this gives us the following result:

Proposition 1.8. Given a cocomplete category C, a collection D of arrows in C, an object A in
C, and a cardinal κ, A is κ-small relative to D, if, for all κ-filtered ordinals λ and all λ-sequences
X : λ → C such that the map Xβ → Xβ+1 belongs to D for all β + 1 < λ, given any colimit
colimX for X, the following holds:

(i) Given arrows f : A → Xα and g : A → Xβ in C, if f and g agree in the colimit (i.e., if

the compositions A
f−→ Xα → colimX and A

g−→ Xβ → colimX are equal), then f and g
are equal in some stage of the colimit (i.e., there exists γ < λ with α, β ≤ γ such that the

compositions A
f−→ Xα → Xγ and A

g−→ Xβ → Xγ are equal).
(ii) Any arrow f : A → colimX factors through some stage of the colimit (i.e., there exists

β < λ and an arrow f̃ : A → Xβ such that the composition A
f̃−→ Xβ → colimX equals

f).

In terms of the canonical map colimβ<λ C(A,Xβ) → C(A, colimX), the first condition shows
injectivity, while the second shows surjectivity.

We will use the characterization of smallness given by this remark whenever proving smallness
arguments, as in the following example.

Example 1.9 (Hovey 2.1.5). Every set is small. Indeed, if A is a set we claim that A is |A|-small.
To see this, suppose λ is an |A|-filtered ordinal, and X is a λ-sequence of sets. First of all, by
Remark 1.7, the elements of colimX are equivalence classes of elements a ∈ Xα where a ∈ Xα

and b ∈ Xβ represent the same element of colimX iff there exists α, β ≤ γ < λ so that a and b
are sent to the same elements by the maps Xα → Xγ and Xβ → Xγ , respectively. Now, we show
the conditions of Proposition 1.8.

First, we need to show that given α, β < λ, if f : A → Xα and g : A → Xβ such that the

compositions f : A
f−→ Xα → colimX and g : A

g−→ Xβ → colimX are equal, then f and g are

equal in some stage of the colimit. For each a ∈ A, since f(a) = f(g) in colimX, by the above
characterization of colimX, there exists γa < λ with α, β ≤ γa such that f(a) and g(a) are sent
to the same element in Xγa

by the maps Xα → Xγa
and Xβ → Xγa

, respectively. Then let
γ := supa∈A γa. Since |{γa}a∈A| ≤ |A| and λ is |A|-filtered, necessarily γ < λ. Then clearly the

compositions A
f−→ Xα → Xγ and A

g−→ Xβ → Xγ agree for all a ∈ A.
Secondly, we wish to show that given a map f : A → colimX, that f factors through Xβ →

colimX for some β < λ. For each a ∈ A, by the explicit description of colimX, there exists some
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βa < λ and some xa ∈ Xβa
such that f(a) = [xa]. Then let β := supa∈A βa, so β < λ as X is

|A|-filtered. Now define f̃ : A → Xβ like so: for a ∈ A, define f̃(a) ∈ Xβ to be the image of xa

along the map Xβa → Xβ . Then clearly the composition f ′ : A
f̃−→ Xβ → colimX is equal to f ,

by unravelling definitions.

Definition 1.10 (Hovey Definition 2.1.7). Let I be a class of maps in a category C.

(1) A map is I-injective if it has the right lifting property w.r.t. every map in I. The class
of I-injective maps is denoted I-inj (or I⊥).

(2) A map is I-projective if it has the left lifting property w.r.t. every map in I. The class of
I-projective maps is denoted I-proj (or ⊥I).

(3) A map is an I-cofibration if it has the left lifting property w.r.t. every I-injective map.
The class of I-cofibrations is the class (I-inj)-proj and is denoted I-cof (or ⊥(I⊥)).

(4) A map is an I-fibration if it has the right lifting property w.r.t. every I-projective map.
The class of I-fibrations is the class (I-proj)-inj and is denoted I-fib (or (⊥I)⊥).

The following is asserted in Hovey on pg. 30 following Definition 2.1.7, but not proven. We
provide a proof.

Lemma 1.11. Given classes A and B of maps in a category C with A ⊆ B, we have A ⊆ ⊥(A⊥),
A ⊆ (⊥A)⊥, (⊥(A⊥))⊥ = A⊥, ⊥((⊥A)⊥) = ⊥A, A⊥ ⊇ B⊥, ⊥A ⊇ ⊥B, ⊥(A⊥) ⊆ ⊥(B⊥), and
(⊥A)⊥ ⊆ (⊥B)⊥.

Proof. Each of these amount to unravelling definitions and are entirely straightforward. □

Definition 1.12 (Hovey Definition 2.1.9). Let I be a set of maps in a cocomplete category C.
A relative I-cell complex is a transfinite composition of pushouts of elements of I. That is, if
f : A → B is a relative I-cell complex, then there is an ordinal λ and a λ-sequence X : λ → C

such that f is the composition of X and such that, for each β such that β + 1 < λ, there is a
pushout square

Cβ Xβ

Dβ Xβ+1

⌜gβ

with gβ ∈ I. We denote the collection of relative I-cell complexes by I-cell. We say that A ∈ C

is an I-cell complex if the map 0→ A is a relative I-cell complex.

Lemma 1.13. Let C be a category and I a class of morphisms in C. Then I-cell is closed under
composition with isomorphisms.

Proof Sketch. Suppose that f : B → C is an element of I-cell, and h : A→ B and g : C → D are
isomorphisms in C. We wish to show f ◦ h and g ◦ f are also elements of I-cell. Since f ∈ I-cell,
there exists an ordinal λ, a λ-sequence X with X0 = B, and a colimit cone η : X ⇒ C, such that
η0 = f .

First of all, construct a new cone η′ : X ⇒ D under X where η′β := g ◦ηβ . It is straightforward
to verify that η′ is a colimit cone for X since η is a colimit cone and g is an isomorphism. Thus,
g ◦ f = g ◦ η0 = η′0 ∈ I-cell, as η′0 is the composition of a sequence of pushouts of elements of I.

On the other hand, we may construct a new λ-sequence X ′ by defining X ′
0 = A, X ′

β = Xβ for

all 0 < β < λ, the map X ′
0 → X ′

β for 0 < β < λ to be the composition

A B = X0 Xβ ,
h

and the composition X ′
α → X ′

β to simply be the same map Xα → Xβ for 0 < α ≤ β < λ.
It is straightforward to verify that defines a λ-sequence, and that we may define a colimit cone
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η′ : X ′ ⇒ C by η′0 = η0 ◦ h = f ◦ h, and η′β = ηβ for 0 < β < λ. Furthermore, clearly for all

1 < β+1 < λ, we have the arrow X ′
β → X ′

β+1 is a pushout of a map in I. Thus, in order to show

f ◦ h ∈ I-cell, it remains to show that the arrow X ′
0 = A → X1 = X ′

1 is a pushout of a map in
I. Indeed, we know B = X0 → X1 is a pushout of a map k : P → Q in I, and it can be easily
verified the diagram on the right is a pushout diagram as the left diagram is a pushout diagram
and h is an isomorphism

P X0 P X0 X ′
0

⇝ X0

Q X1 Q X ′
1

k

⌜

h

h−1

⌜

□

Definition 1.14. Let C be a category and I a collection of morphisms in C. Then if I is closed
under transfinite composition, pushouts, and retracts then we say I is saturated.

Lemma 1.15. Suppose I is a class of maps in a cocomplete category C. Then ⊥I is saturated.

Proof. □TODO

This yields the following Corollary:

Corollary 1.16 (Hovey 2.1.10). Given a cocomplete category C and a class of maps I in C,
I-cell ⊆ ⊥(I⊥).

Theorem 1.17 (Small Object Argument, Hovey 2.1.14). Suppose C is a cocomplete categroy,
and I is a set of maps in C. Suppose the domains of the maps of I are small relative to I-cell.
Then there is a functorial factorization (γ, δ) on C such that for all morphisms f ∈ C, the map
γ(f) is in I-cell and the map δ(f) is in I-inj.

Proof. □TODO

Corollary 1.18 (Hovey 2.1.15). Suppose that I is a set of maps in a cocomplete category C.
Suppose as well that the domains of I are small relative to I-cell. Then given f : A → B in

⊥(I⊥), there is a g : A→ C in I-cell such that f is a retract of g by a map which fixes A.

Proof. □TODO

Definition 1.19 (Hovey Definition 2.1.17). Suppose C is a model category. We say that C is
cofibrantly generated if there are sets I and J of maps such that:

1. The domains of the maps of I are small relative to I-cell;
2. The domains of the maps of J are small relative to J-cell;
3. The class of fibrations is J⊥; and
4. The class of trivial fibrations is I⊥.

We refer to I as the set of generating cofibrations and to J as the set of generating trivial
cofibrations. A cofibrantly generated model category is finitely generated if we can choose the sets
I and J above so that the domains and codomains of I and J are finite relative to I-cell.

Proposition 1.20 (Hovey Proposition 2.1.18). Suppose C is a cofibrantly generated model cate-
gory, with generating cofibrations I and generating trivial fibrations J .

(a) The cofibrations form the class ⊥(I⊥).
(b) Every cofibration is a retract of a relative I-cell complex.
(c) The domains of I are small relative to the cofibrations.
(d) The trivial cofibrations form the class ⊥(J⊥).
(e) Every trivial cofibration is a retract of a relative J-cell complex.
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(f) The domains of J are small relative to the trivial cofibrations.
If C is fibrantly generated, then the domains and codomains of I and J are finite relative to the
cofibrations.

Proof. □ TODO

Theorem 1.21 (Hovey Theorem 2.1.19). Suppose C is a complete & cocomplete category. Suppose
W is a subcategory of C, and I and J are sets of maps of C. Then there is a cofibrantly generated
model structure on C with I as the set of generating cofibrations, J as the set of generating trivial
fibrations, and W as the subcategory of weak equivalences if and only if the following conditions
are satisfied.

1. The subcategory W has the 2-of-3 property and is closed under retracts.
2. The domains of I are small relative to I-cell.
3. The domains of J are small relative to J-cell.
4. J-cell ⊆W ∩ ⊥(I⊥).
5. I⊥ ⊆W ∩ J⊥.
6. Either W ∩ ⊥(I⊥) ⊆ ⊥(J⊥) or W ∩ J⊥ ⊆ I⊥.

Proof. □ TODO

We establish some notation for the following results. Given an adjunction F : C ⇄ D : G, we
will use “(−)♯” and “(−)♭” to decorate a pair of adjoint arrows f ♯ : F (C)→ D and f ♭ : C → G(D).
Ocasionally we will write g♯ or g♭ to denote the transpose of a morphism g : C → G(D) or
g : F (C)→ D not already written in this form.

Given a complete and cocomplete category C and arrows i : A → B, j : C → D, p : X → Y ,
where C and D are exponentiable,2 define Q(j, p) to be the fiber product (j∗, p∗) which fits into
the following fiber diagram:

XD

XC ×Y C Y D Y D

XC Y C

Q(j,p)
p∗

j∗

p∗

j∗
⌟

where given an object Z, the pullback map j∗ : ZD → ZC is obtained as the adjoint of the
composition

ZD × C
id×j−−−→ ZD ×D

εZ−−→ Z,

where ε is the counit of the adjunction −×D ⊣ (−)D.
Similarly, write i∧ j := (i× idD, idB × j) to be the arrow which fits into the following pushout

diagram:

A× C B × C

A×D A×D
∐

A×C B × C

B ×D

i×idC

idA×j

i∧j

idB×j

i×idD

⌟

2Explicitly, the functors −× C and −×D admit right adjoints (−)C and (−)D, respectively.
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Proposition 1.22. Let C be a complete and cocomplete category, and suppose we are given arrows
i : A→ B, j : C → D, and p : X → Y with C and D exponentiable objects in C. Then there is a
bijective correspondence between lifting problems of the form

(1)

A×D
∐

A×C B × C X

B ×D Y

pi∧j

and lifting problems of the form

(2)

A XD

B XC ×Y C Y D.

i Q(j,p)

Moreover, this bijection extends to a bijection between the solutions of (1) and the solutions of
(2).

Before we prove this proposition, we first recall two results

Lemma 1.23. Given a pair of adjoint functors F : C ⇄ D : G (F is the left adjoint), for any
morphisms with domains and codomains as displayed below

F (C) D C G(D)

↭

F (C ′) D′ C ′ G(D′)

f♯

kFh

g♯

f♭

Gkh

g♭

the left-hand square commutes in D iff the right-hand transposed square commutes in C.

Proof. This is Lemma 4.1.3 from Riehl. □Add reference

Lemma 1.24. Let C be a complete and cocomplete category, and suppose we are given morphisms
j : C → D and k♯ : Z×D →W in C with C and D exponentiable. Then the following two diagrams
commute

Z × C Z ×D Z WD

WD × C W (Z ×D)C WC

id×j

k♯k♭×id

(j∗)♯

(idZ×j)♭

(k♯)∗

k♭

j∗

Proof. By Lemma 1.23 it suffices to show that either diagram commutes in order to show they
both commute. We will show the left diagram commutes. Recall that by how the pullback j∗ is
defined, that (j∗)♯ = εW ◦ (idWD×j). Thus, it suffices to show the following diagram commutes:

(3)

Z × C Z ×D

WD × C WD ×D W

id×j

k♯k♭×id

id×j εD
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It is straightforward to see by the universal property of the product that (idWD ×j)◦ (k♭× idC) =
(k♭ × idD) ◦ (idZ × j). Then by Lemma 1.23 applied to the following diagram

Z WD

WD WD

k♭

k♭

we get that εD ◦ (k♭ × idD) = (idWD )♭ ◦ (k♭ × idD) = idW ◦ k♯ = k♯. To summarize, we get that

εD ◦ (idWD × j) ◦ (k♭ × idC) = εD ◦ (k♭ × idD) ◦ (idZ × j) = k♯ ◦ (idZ × j),

so diagram (3) commutes, as desired. □

Now we prove the proposition.

Proof. Unravelling definitions, a lifting problem of the form (1) amounts to the data of maps
f ♯ : A ×D → X, g♯ : B × C → X, and h♯ : B ×D → Y such that the following three diagrams
commute:

(4)

A× C B × C A×D X B × C X

A×D X B ×D Y B ×D Y

f♯

pi×idD

h♯

idB×j

h♯

g♯

p

i×idC

idA×j

f♯

g♯

(The left diagram is the data of a morphism A × D
∐

A×C B × C → X and the other two
diagrams assert commutativity of the lifting problem). We label these diagrams (4A), (4B), and
(4C), respectively. In terms of these data, a solution to the lifting problem is a single arrow
ℓ♯ : B ×D → X which serves as a lift for both the diagrams (4B) and (4C).

Conversely, a lifting problem of the form (2) is the data of maps f ♭ : A→ XD, g♭ : B → XC ,
and h♭ : B → Y D such that the following three diagrams commute:

(5)

B XC A XD A XD

Y D Y C B Y D B XC

g♭

p∗h♭

j∗

f♭

j∗i

g♭

f♭

p∗i

h♭

(The left diagram is the data of a morphism B → XC ×Y C Y D and the other two diagrams asser
commutativity of the lifting problem). We label these diagrams (5A), (5B), and (5C), respectively.
In terms of these data, a solution to the lifting problem is a single arrow ℓ♭ : B → XD which
serves as a lift for both the diagrams (5B) and (5C).

Thus, in order to show the desired statement it suffices to show given arrows f ♯ : A×D → X,
g♯ : B × C → X, h♯ : B ×D → Y , and ℓ♯ : B ×D → X, that:

• (4B) commutes iff (5B) commutes,
• (4A) commutes iff (5C) commutes,
• (4C) commutes iff (5A) commutes,
• ℓ♯ is a lift of (4B) iff ℓ♭ is a lift of (5B), and
• Assuming ℓ♯ is a lift of (4B) and ℓ♭ is a lift of (5B), ℓ♯ is a lift of (4C) iff ℓ♭ is a lift of

(5C).

To start with, note that (4B) commutes iff (5B) commutes, by Lemma 1.23.
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Next, we claim that (4A) commutes iff (5C) commutes. By Lemma 1.23, (4A) commutes iff
the following diagram commutes

A B

(A×D)C XC

(idA×j)♭

(f♯)∗

i

g♭

By Lemma 1.24 (the second diagram), (f ♯)∗ ◦ (idA × j)♭ = j∗ ◦ f ♭, so this diagram commutes iff
the following diagram commutes:

A B

XD XC

i

g♭f♭

j∗

This is precisely (5C) (but flipped), as desired.
Next, we claim that (4C) commutes iff (5A) commutes. By Lemma 1.23, (5A) commutes iff

the following diagram commutes

B × C X

Y D × C Y

h♭×id

(j∗)♯

g♯

p

By Lemma 1.24 (the first diagram), (j∗)♯ ◦ (h♭× idC) = h♯ ◦ (idB × j), so this diagram commutes
iff the following diagram commutes:

B × C X

B ×D Y

g♯

pidB×j

h♯

This is precisely (4C), as desired.
Now, we claim that ℓ is a lift for (4B) iff it is a lift for (5B). Indeed, by Lemma 1.23, f ♯ =

ℓ♯ ◦ (i× idD) iff f ♭ = ℓ♭ ◦ i and p ◦ ℓ♯ = h♯ iff p∗ ◦ ℓ♭ = h♭:

A×D X A XD B ×D X B XD

↭ ↭

B ×D X B XD B ×D Y B Y Dh♯

ℓ♯

p

h♭

ℓ♭

p∗

f♭

i

ℓ♭

i×idD

ℓ♯

f♯

In other words, ℓ♯ makes the top (resp. bottom) triangle of (4B) commute iff ℓ♭ makes the top
(resp. bottom) triangle of (5B) commute, as desired.

Finally, it remains to show that if ℓ♯ and ℓ♭ determine lifts of (4B) and (5B), respectively, then
ℓ♯ is a lift for (4C) iff it is a lift for (5C). First of all, since ℓ♯ and ℓ♭ define lifts of (4B) and
(5B), we already have p ◦ ℓ♯ = h♯ and ℓ♭ ◦ i = f ♭, so it is sufficient (and necessary) to show that
ℓ♯◦(idB×j) = g♯ iff j∗◦ℓ♭ = g♭. Note by Lemma 1.24 (second diagram), j∗◦ℓ♭ = (ℓ♯)∗◦(idZ×j)♭,
so it suffices to show that ℓ♯ ◦ (idB × j) = g♯ iff (ℓ♯)∗ ◦ (idZ × j)♭ = g♭. Indeed, this follows by
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Lemma 1.23:

B × C B × C B B

↭

B ×D X (B ×D)C XC

idB×j g♯

ℓ♯

g♭(idB×j)♭

(ℓ♯)∗

□

2. The Model Structure on Topological Spaces

A map f : X → Y in Top is an inclusion if it is continuous, injective, and for all U ⊆ X open,
there is some V ⊆ Y open such that f−1(V ) = U . If f is a closed inclusion and every point in
Y \ f(X) is closed, then we call f a closed T1 inclusion. We will let T denote the class of closed
T1 inclusions in Top.

The symbol Dn will denote the unit disk in Rn, and the symbol Sn−1 will denote the unit
sphere in Rn, so that we have the boundary inclusions Sn−1 ↪→ Dn. In particular, for n = 0 we
let D0 = {0} and S−1 = ∅.

Recall: If F : J→ Top is a functor, where J is a small category, the limit of F is obtained by
taking the limit in the category of sets, and then topologizing it with the initial topology, where
if η : limF ⇒ F is the limit cone, then the topology on limF is that with subbasis given by sets
of the form η−1

j (U) where j ∈ J and U ⊆ Fj is open. Similarly, the colimit of F is obtained by
taking the colimit colimF in the category of sets and endowing it with the final topology, where
a set U ⊆ colimF is open if and only if ε−1

j (U) is open in Fj for all j ∈ J, where ε : F ⇒ colimF

is the colimit cone (equivalently, a set C ⊆ colimF is closed if and only if ε−1
j (C) is closed in Fj

for all j ∈ J).
Given a space X, we construct a functor (−)X : Top → Top as follows: Given a space Y ,

define Y X to be the space whose underlying set is the set Top(X,Y ) of continuous maps X → Y ,
and the topology on Y X is the compact-open topology, i.e., the topology with subbasis given by
the sets of the form

S(K,U) := {f ∈ Top(X,Y ) : f(K) ⊆ U}
for K ⊆ X compact and U ⊆ Z open. Given a continuous map f : Y → Z, define the induced
map f∗ : Y X → ZX by f∗(g) := f ◦ g. Unravelling definitions, we have that given f : Y → Z
continuous, f−1

∗ (S(K,U)) = S(K, f−1(U)) for all K ⊆ X compact and U ⊆ Z open, so that f∗
is continuous. Furthermore, (−)X is clearly functorial, by associativity and unitality of function
composition.

Given a topological space X, we say that X is locally compact if for all points x ∈ X and open
neighborhoods U of x, there exists an open set V ⊆ X with x ∈ V , V ⊆ U , and V compact. We
claim that (−)X is right adjoint to −×X when X is locally compact and Hausdorff.

Proposition 2.1. If X is a locally compact Hausdorff space, then functor −×X is left adjoint
to (−)X (so that in particular −×X preserves colimits).

Proof. We start by constructing the counit and unit of the adjunction. Given a space Z, define
the counit εZ : X × ZX → Z to be the evaluation function, taking a pair (x, f) 7→ f(x). First,
we claim εZ is continuous. Suppose we are given an open set V ⊆ Z and a point (x, f) ∈ ε−1

Z (V )
(so f(x) ∈ V ). Since f is continuous and X is locally compact, there exists an open set U ⊆ X
containing x such that x ∈ U ⊆ U ⊆ f−1(V ) with U compact. Then consider the open set
U × S(U, V ) in X × Y X . First of all, (x, f) ∈ U × S(U, V ), as x ∈ U and U ⊆ f−1(V ),
so that f(U) ⊆ V meaning f ∈ S(U, V ). Furthermore, given (y, g) ∈ U × S(U, V ), we have
εZ(y, g) = g(y) ∈ g(U) ⊆ g(U) ⊆ V , so U × S(U, V ) is an open neighborhood of x contained
in ε−1

Z (V ), as desired. Hence, εZ is continuous. It remains to show naturality. Given a map
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f : Z →W , we wish to show the following diagram commutes:

X × ZX Z

X ×WX W

εZ

idX×f∗

εW

f

Indeed, chasing an element (x, g) around the diagram yields:

(x, g) g(x)

(x, f ◦ g) f(g(x))

so it does indeed commute.
Now we wish to define the unit ηY : Y → (Y ×X)X . Given y ∈ Y , define ηY (y) ∈ (Y ×X)X

by ηY (y)(x) := (y, x). First of all, for it to be true that ηY (y) ∈ (X × Y )X , it must be true
that ηY (y) is continuous. Indeed, this is clear as ηY is obtained as the product map y × idX :
X → Y × X, where y represents the constant function on y (which is obviously continuous).
Furthermore, ηY itself is continuous: given K ⊆ X compact and U ⊆ Y × X open, we wish
to show that η−1

Y (S(K,U)) is open in Y . It suffices to show that given y ∈ η−1
Y (S(K,U)), there

exists an open neighborhood W of y that is mapped by ηY into S(K,U). Since y ∈ η−1
Y (S(K,U)),

ηY (y)(K) = {y} ×K ⊆ U . Then U ∩ (Y ×K) is an open set in the subspace Y ×K containing
the slice {y} ×K. By definition of the product topology, for each k ∈ K, there exist open sets
Wk ⊆ Y and Vk ⊆ K such that (y, k) ∈ Wk × Vk ⊆ U ∩ (Y ×K). Then the Vk’s form an open
cover of K, which is compact, so that there exist k1, . . . , kn ∈ K with Vk1 ∪ · · · ∪Vkn = K. Hence
if we define W := Wk1

∩· · ·∩Wkn
, then {y}×K ⊆W ×K ⊆ U ∩ (Y ×K), and W is open in Y as

it is a finite intersection of open sets. Then for all w ∈W , ηY (w)(K) = {w} ×K ⊆W ×K ⊆ U .
Hence, indeed ηY is continuous. It remains to show naturality. Given a map f : Y →W , we wish
to show the following diagram commutes:

Y (Y ×X)X

W (W ×X)X

f

ηW

ηY

(f×idX)∗

Indeed, chasing an element y around the top of the diagram yields the function obtained as the
composition x 7→ (y, x) 7→ f × idX(y, x) = (f(y), x), while chasing around the bottom of the
diagram more directly yields the function x 7→ (f(y), x).

Now that we have constructed the unit and counit, it remains to verify the counit-unit equa-
tions, i.e., that for each Y ∈ Top that εY×X ◦ (ηY × idX) = idY×X and (εY )∗ ◦ ηY X = idY X .
First of all, given (y, x) ∈ Y ×X, we have

(εY×X ◦ (ηY × idX))(y, x) = εX×Y (ηY (y), x) = ηY (y)(x) = (y, x).

On the other hand, given f ∈ Y X , we have

(εY )∗(ηY X (f)) = (εY )∗([x 7→ (f, x)]) = [x 7→ (f, x) 7→ εY (f, x) = f(x)] = f.

Hence, indeed ε and η form the counit and unit for the adjoint pair (−×X, (−)X). □

Now that we have gotten some topological preliminaries out of the way, we are ready to define
the model structure.

Definition 2.2. A map f : X → Y in Top is called a weak equivalence if

πn(f, x) : πn(X,x)→ πn(Y, f(x))
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is an isomorphism for all n ≥ 0 and for all x ∈ X. We will write W to refer to the class of all
weak equivalences in Top.

Define the set of maps I ′ to consist of all the boundary inclusion Sn−1 ↪→ Dn for all n ≥ 0,
and define the set J to consist of all the inclusions Dn ↪→ Dn × I mapping x 7→ (x, 0) for n ≥ 0.
Then a map f will be called a cofibration if it is in I ′-cof = ⊥(I

′
⊥), and a fibration if it is in

J-inj = J⊥.
A map in I ′-cell is usually called a relative cell complex ; a relative CW-complex is a special

case of a relative cell complex, where, in particular, the cells can be attached in order of their
dimension. Note that in particular maps of J are relative CW complexes, hence are relative I ′-cell
complexes. A fibration is often known as a Serre fibration in the literature.

Theorem 2.3 (Hovey Theorem 2.4.19). There is a finitely generated model structure on Top
with I ′ as the set of generating cofibrations, J as the set of generating trivial cofibrations, and the
cofibrations, fibrations, and weak equivalences as above. Every object of Top is fibrant, and the
cofibrant objects are retracts of relative cell complexes.

Proof. We will apply Theorem 1.21 to get that there is a cofibrantly generated model structure
on Top with I ′ as the set of generating cofibrations, J as the set of generating trivial fibrations,
and W as the subcategory of weak equivalences. The six requirements outlined in the theorem
will be verified like so:

1. W is a subcategory of C which has the 2-of-3 property and is closed under retracts:
Lemma 2.12.

2. The domains of I ′ are small relative to I ′-cell: Proposition 2.11.
3. The domains of J are small relative to J-cell: Proposition 2.11.
4. J-cell ⊆ W ∩ ⊥(I

′
⊥): In Proposition 2.13, we will show ⊥(J⊥) ⊆ W ∩ ⊥(I

′
⊥), and by

Corollary 1.16 J-cell ⊆ ⊥(J⊥).
5. I ′⊥ ⊆W ∩ J⊥: Proposition 2.14
6. W ∩ J⊥ ⊆ I ′⊥: Proposition 2.24

It will follow by the definition of a cofibrantly generated model structure (Definition 1.19) that
the fibrations in this model structure are given by J⊥, which is precisely how we defined it. By
Proposition 1.20, the class of cofibrations will be given by ⊥(I

′
⊥), which is likewise exactly how

we defined them.
In Proposition 2.8, we will show that compact spaces are finite relative to the class T of closed T1

inclusions. Hence, this model structure will be finitely generated, as the domains and codomains
of I ′ and J are all compact, and by the reasoning given above we will have shown I ′-cell ⊆ T.

We will show that every object of Top is fibrant in Corollary 2.17. □

Lemma 2.4. Let λ be an ordinal, and X a λ-sequence in Top. Then:

(i) If X is a λ-sequence of injections, then Xα → Xβ is an injective for all α ≤ β < λ.
(ii) If X is a λ-sequence of inclusions, then the map Xα → Xβ is an inclusion for all α ≤

β < λ.
(iii) If X is a λ-sequence of closed T1 inclusions, then the map Xα → Xβ is a closed T1

inclusion for all α ≤ β < λ.

Proof. In what follows, given α ≤ β < λ, let ια,β denote the map Xα → Xβ .

(i) Let α < λ. We perform a proof by transfinite induction on β for α ≤ β < λ that
ια,β : Xα → Xβ is injective. For the zero case, clearly ια,α = idXα

is injective. Supposing
ια,β is injective for some α < β + 1 < λ, we have ια,β+1 = ιβ,β+1 ◦ ια,β is a composition
of injections, and is therefore clearly injective itself. Finally, suppose γ is a limit ordinal
with α ≤ γ < λ such that ια,β is injective for all α ≤ β < γ. We claim ια,γ is injective.
Since Xγ is colimit preserving and γ is a limit ordinal, Xγ is the colimit of the diagram
{Xβ}β<γ via the maps ιβ,γ , so that in particular by Remark 1.7 and the fact that the
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forgetful functor Top → Set preserves colimits, given a, b ∈ Xα with ια,γ(a) = ια,γ(b),
there exists some β < γ with ια,β(a) = ια,β(b), and ια,β is injective for all β < γ, so it
must have been true a = b in Xα.

(ii) By part(i), we know that ια,β is injective for α ≤ β < λ. Thus it suffices to prove the
following statement: For all α < λ and U ⊆ Xα, for all α ≤ β < λ, there exists Uβ ⊆ Xβ

with Uα = U such that for all α ≤ β′ ≤ β < λ, ι−1
β′,β(Uβ) = Uβ′ . We prove this by

transfinite recursion on α ≤ β < λ.
The zero case has been taken care of: Uα = U . For the sucessor case, given α < β+1 <

λ, supposing Uβ has been defined with the desired properties, since ιβ,β+1 is an inclusion,

there exists Uβ+1 ⊆ Xβ+1 with ι−1
β,β+1(Uβ+1) = Uβ . Then given α ≤ β′ ≤ β + 1, we have

ι−1
β′,β+1(Uβ+1) = (ιβ,β+1 ◦ ιβ′,β)

−1(Uβ+1) = ι−1
β′,β(ι

−1
β,β+1(Uβ+1)) = ι−1

β′,β(Uβ) = Uβ′ .

Finally, the limit case. Suppose γ is a limit ordinal with α < γ ≤ λ, and suppose Uβ has
been constructed with the desired properties for α ≤ β < γ. We wish to define Uγ . Since
X is colimit preserving and γ = supα≤β<γ β, the maps ιβ,γ for α ≤ β < γ form a colimit
cone for the diagram {Xβ}α≤β<γ . Let S = {0, 1} be the Sierpinski space whose open
sets are {∅, {1}, {0, 1}}. For α ≤ β < γ, define a map sβ : Xβ → S mapping everything

in Uβ to 1 and every other point to 0. Each sβ is clearly continuous, as s−1
β (1) = Uβ .

Furthermore, we claim the sβ ’s form a cone under the diagram {Xβ}α≤β<γ , i.e., that
given α ≤ β′ ≤ β < γ, the following diagram commutes

Xβ′ Xβ

S

ιβ′,β

sβsβ′

To see this, let x ∈ Xβ′ . If x ∈ Uβ′ = ι−1
β′,β(Uβ), then ιβ′,β(x) ∈ Uβ , so sβ(ιβ′,β(x)) =

1 = sβ′(x). Conversely, if x ∈ Xβ′ \ Uβ′ = Xβ′ \ ι−1
β′,β(Uβ), then x /∈ ι−1

β′,β(Uβ), so

ιβ′,β(x) /∈ Uβ , meaning sβ(ιβ′,β(x)) = 0 = sβ′(0). Hence, the sβ ’s do indeed form a
cone under {Xβ}α≤β<γ , so by universal property of the colimit there exists a unique map
ℓ : Xγ → S such that sβ = ℓ ◦ ιβ,γ for all α ≤ β < γ. Define Uγ := ℓ−1(1), which is

open as {1} is open in S. It remains to show that for all α ≤ β ≤ γ that ι−1
β,γ(Uγ) = Uβ .

Indeed, we have

ι−1
β,γ(Uγ) = ι−1

β,γ(ℓ
−1(1)) = (ℓ ◦ ιβ,γ)−1(1) = s−1

β (1) = Uβ .

(iii) By part (ii), we know that ια,β is an inclusion for α ≤ β < λ. Fix α < λ. We perform
transfinite induction on α ≤ β < λ to show that ια,β is a closed T1 inclusion, assuming
it is already an inclusion. For the zero case, clearly ια,α = idXα

is closed, and vacuosuly
very point in Xα \ ια,α(Xα) = ∅ is a closed point. For the successor case, supposing
ια,β : Xα → Xβ is a closed T1 inclusion, we wish to show that ια,β+1 : Xα → Xβ+1 is a
closed T1 inclusion. Since ια,β+1 = ιβ,β+1 ◦ ια,β is a composition of closed T1 inclusions,
it is clearly closed. It remains to show that every point in Xβ+1 \ ια,β+1(Xα) is closed in
Xβ+1. Indeed, let x ∈ Xβ+1 \ ια,β+1(Xα). First, if x ∈ Xβ+1 \ ιβ,β+1(Xβ), we are done,
as ιβ,β+1 is a closed T1 inclusion. Hence, we may assume that x ∈ ιβ,β+1(Xβ), so there
exists some y ∈ Xβ such that ιβ,β+1(y) = x. Since ιβ,β+1 is closed, in order to show x is
a closed point in Xβ+1, it suffices to show that y is a closed point in Xβ . Since ια,β is a
closed T1 inclusion, it further suffices to show that y is not in the image of ια,β . Suppose
for the sake of a contradiction that there existed z ∈ Xα with ια,β(z) = y. Then we would
have

ια,β+1(z) = ιβ,β+1(ια,β(z)) = ιβ,β+1(y) = x,
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a contradiction of the fact that x ∈ Xβ+1 \ ια,β+1(Xα). Hence, it must have been true
that y is not in the image of ια,β in the first place, the desired result. Finally, the limit
case. Suppose γ is a limit ordinal with α < γ ≤ λ such that ια,β is a closed T1 inclusion
for all α ≤ β < γ. Then we wish to show ια,γ is a closed T1 inclusion.

First, we show ια,γ is closed. Let C ⊆ Xα be closed. Since γ = supα≤β<γ β and X
is colimit-preserving, Xγ is the colimit of the Xβ ’s for α ≤ β < γ via the maps ιβ,γ ,
and the topology on Xγ is the final topology induced by these maps. Hence, in order to

show ια,γ(C) is closed in Xγ , it suffices to show that ι−1
β,γ(ια,γ(C)) is closed in Xβ for all

α ≤ β < γ. It further suffices to show that ι−1
β,γ(ια,γ(C)) = ια,β(C), as ια,β is closed. First,

suppose x ∈ ι−1
β,γ(ια,γ(C)), so ιβ,γ(x) = ια,γ(c) for some c ∈ C. Then since the forgetful

functor Top → Set preserves colimits, by the explicit description of the colimit in Set
(Remark 1.7), there exists µ with α, β ≤ µ < γ such that ιβ,µ(x) = ια,µ(c). But ια,µ =
ιβ,µ ◦ ια,β , and ιβ,µ is injective (by (i)) so x = ια,β(c), meaning x ∈ ια,β(C), as desired.

Conversely, suppose we are given c ∈ C, then we wish to show ια,β(c) ∈ ι−1
β,γ(ια,γ(C)),

i.e., that ιβ,γ(ια,β(c)) ∈ ια,γ(C). This follows immediately as ιβ,γ ◦ ια,β = ια,γ .
Lastly, we show that for all x ∈ Xγ \ ια,γ(Xα) that x is a closed point in Xγ . Again

by the description of the colimit in Set (Remark 1.7), the fact that the forgetful functor
Top→ Set preserves colimits, and that X preserves colimits, we know that every point in
Xγ is in the image of some ιβ,γ for some α ≤ β < γ. Hence, there exists some α < β < γ
and a point y ∈ Xβ with ιβ,γ(y) = x. By the preceeding paragraph, ιβ,γ is closed, so in
order to show x is a closed point in Xγ it suffices to show that y is a closed point in Xβ .
It further suffices to show that y ∈ Xβ \ια,β(Xα), as ια,β is a closed T1 inclusion. Suppose
for the sake of a contradiction that there existed some z ∈ Xα such that ια,β(z) = y.
Then we would have

ια,γ(z) = ιβ,γ(ια,β(z)) = ιβ,γ(y) = x,

a contradiction of the fact that x ∈ Xγ \ ια,γ(Xα). Hence, y must not have been in the
image of ια,β in the first place, as desired. □

This result, by Lemma 1.2 and Lemma 1.3, gives the following corollaries:

Corollary 2.5. The class of injective maps (resp. inclusions, closed T1 inclusions) in Top is
closed under transfinite composition.

Corollary 2.6. Let λ be an ordinal, and X be a λ-sequence in Top. Then:

(i) If X is a λ-sequence of injections, then the canonical map Xα → colimX is an injection
for all α < λ.

(ii) If X is a λ-sequence of inclusions, then the canonical map Xα → colimX is an inclusion
for all α < λ.

(iii) If X is a λ-sequence of closed T1 inclusions, then the canonical map Xα → colimX is a
closed T1 inclusion for all α < λ.

Lemma 2.7 (Hovey 2.4.1). Every topological space is small relative to the inclusions.

Proof. We claim that every topological space A is |A|-small relative to the inclusions. We use the
characterization of smallness afforded by Proposition 1.8. Let λ be an |A|-filtered ordinal, and
let X : λ → Top be a λ-sequence so that Xβ → Xβ+1 is an inclusion for all β + 1 < λ. Recall
that the forgetful functor Top→ Set is forgetful, so elements of colimX are equivalence classes
of elements a ∈ Xα for α < λ, where a ∈ Xα and b ∈ Xβ represent the same equivalence class iff
there exists α, β ≤ γ < λ so that a and b are sent to the same element by the maps Xα → Xγ

and Xβ → Xγ , respectively.
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First, suppose f : A → Xα and g : A → Xβ are continuous maps such that the composi-

tions A
f−→ Xα → colimX and A

g−→ Xβ → colimX are equal. Then the same proof given in
Example 1.9 works to show that f and g are equal in some stage of the colimit, as desired.

Conversely, suppose we are given a (continuous) map f : A → colimX. As in the proof of

Example 1.9, we may find some β < λ and a map of sets f̃ : A→ Xβ such that the composition

A
f̃−→ Xβ

j−→ colimX is equal to f (note we have given the canonical map Xβ → colimX

the name j). It remains to show that f̃ is continuous. Let U ⊆ Xβ be open. Since j is
an inclusion (Corollary 2.6), there exists V ⊆ colimXβ open such that j−1(V ) = U . Then

f̃−1(U) = f̃−1(j−1(V )) = (j ◦ f̃)−1(V ) = f−1(V ), and f is continuous, so f̃−1(U) = f−1(V ) is

open. Thus f̃ is continuous, as desired. □

Proposition 2.8 (Hovey 2.4.2). Compact topological spaces are finite relative to the class T of
closed T1 inclusions.

Proof. We use the characterization of smallness afforded by Proposition 1.8. Let λ be a limit
ordinal, and let X : λ → Top be a λ-sequence so that Xβ → Xβ+1 is a closed T1 inclusion for
all β + 1 < λ. Let j : X ⇒ colimX is a colimit cone for X. Recall that the forgetful functor
Top→ Set is forgetful, so by Remark 1.7 elements of colimX are equivalence classes of elements
a ∈ Xα for α < λ, where a ∈ Xα and b ∈ Xβ represent the same equivalence class iff there exists
α, β ≤ γ < λ so that a and b are sent to the same element by the maps Xα → Xγ and Xβ → Xγ ,
respectively.

First, we show condition (i) of Proposition 1.8. Let j : X ⇒ colimX be a colimt cone for X,
and suppose we are given maps f : A→ Xα and g : A→ Xβ such that jα ◦ f = jβ ◦ g. WLOG,
suppose α ≤ β. Then

jβ ◦ ια,β ◦ f = jα ◦ f = jβ ◦ g,
and jβ is injective (Corollary 2.6) and therefore a monomorphism in Top, so ια,β ◦f = g, meaning
f and g do indeed agree in some stage of the colimit, as desired.

Now we show condition (ii) of Proposition 1.8. Let f : A→ colimX be a continuous map. In
order to show f factors through some Xα, we first claim it is sufficient for there to be some α < λ

with f(A) ⊆ jα(Xα). Given an ordinal α < λ, for each a ∈ A, there exists f̃(a) ∈ Xα such that

jα(f̃(a)) = f(a). Thus we have defined a function f̃ : A→ Xα such that jα ◦ f̃ = f . It remains to

show that f̃ is continuous. Indeed, we know jα is an inclusion (Corollary 2.6), so given U ⊆ Xα

open, there exists V ⊆ colimX open with j−1
α (V ) = U , in which case

f̃−1(U) = f̃−1(j−1
α (V )) = (jα ◦ f̃)−1(V ) = f−1(V ),

which is open as f is continuous. Hence, f̃ is continuous, as desired.
Now, suppose for the sake of a contradiction that for all α < λ, f(A) ̸⊆ jα(Xα). Thus we

may construct a strictly increasing sequence {αn}∞n=0 ⊆ λ such that for n > 0, there exists
xn ∈ jαn

(Xαn
) \ jαn−1

(Xαn−1
) with xn ∈ f(A). Thus for each n > 0, there exists yn ∈ Xαn

such
that jαn

(yn) = xn. Note in particular that given 0 ≤ m < n, yn is not in the image of ιαm,αn
.

Suppose for the sake of a contradiction that yn = ιαm,αn
(z) for some z ∈ Xαm

and 0 ≤ m < n.
Then we know jαm(z) = jαn(ιαm,αn(z)) = jαn(yn) = xn, and

xn ∈ jαn
(Xαn

) \ jαn−1
(Xαn−1

) ⊇ jαn
(Xαn

) \ jαn−1
(ιαm,αn−1

(Xαm
)) = jαn

(Xαn
) \ jαm

(Xαm
).

Hence we reach a contradiction, as jαm(z) = xm but xn is not in the image of jαm . Let µ :=
sup∞n=1 αn. Clearly µ ≤ λ; if µ = λ, define Xµ := colimX, jµ := idXµ , and for α < λ define
ια,µ := jα. Let K := {ιαn,µ(yn)}∞n=1 ⊆ Xµ. We claim every subset of K is closed in Xµ. Since X
is colimit preserving and µ = sup∞n=1 αn, the topology on Xµ is the final topology induced by the
maps ιαn,µ : Xαn

→ Xµ for n = 1, 2, . . .. Thus, given a subset C ⊆ K, in order to show that C is
closed in Xµ, it is sufficient (and necessary) for ι−1

αn,µ(C) to be closed in Xαn for n = 1, 2, . . .. Let



THE STANDARD MODEL STRUCTURE ON SPACES 17

n > 0. Given y ∈ ι−1
αn,µ(C), then ιαn,µ(y) ∈ C ⊆ K, so that in particular ιαn,µ(y) = ιαm,µ(ym)

for some m = 1, 2, . . .. We claim m ≤ n. Suppose for the sake of a contradiction that m > n,
then we would have

ιαm,µ(ym) = ιαn,µ(y) = ιαm,µ(ιαn,αm(y)),

and ιαm,µ is injective (by either Lemma 2.4 if µ < λ or by Corollary 2.6 if µ = λ, in which case
recall we defined ιαm,µ = jαm

), thus ym = ιαn,αm
(y), meaning ym is in the image of ιαn,αm

for
m > n, a contradiction, as we showed earlier this is impossible. Thus it must have been true that
m ≤ n in the first place, so

ιαn,µ(y) ∈ {ιαm,µ(ym)}nm=1 =⇒ y ∈ ι−1
αn,µ({ιαm,µ(ym)}nm=1).

We further claim ι−1
αn,µ({ιαm,µ(ym)}nm=1) = {ιαm,αn

(ym)}nm=1. To see the inclusion ⊆, suppose
z ∈ Xαn

with ιαn,µ(z) = ιαm,µ(ym) for some m ≤ n. Then ιαn,µ(z) = ιαn,µ(ιαm,αn
(ym)) and

ιαn,µ is injective (Lemma 2.4 if µ < λ and Corollary 2.6 if µ = λ), so z = ιαm,αn(ym), as
desired. To see the opposite inclusion, given m ≤ n, we have ιαn,µ(ιαm,αn(ym)) = ιαm,µ(ym), so
ιαm,αn

(ym) ∈ ι−1
αn,µ({ιαm,µ(ym)}nm=1), as desired. Thus, we have shown y ∈ {ιαm,αn

(ym)}nm=1.

Recall our choice of y ∈ ι−1
αn,µ(C) was arbitrary, so ι−1

αn,µ(C) is contained in {ιαm,αn(ym)}nm=1.

Thus, because {ιαm,αn(ym)}nm=1 is finite, in order to show ι−1
αn,µ(C) is closed in Xαn , it suffices

to show that ιαm,αn(ym) is a closed point in Xαn for m = 1, . . . , n. As we have shown above, ym
is not in the image of ια0,αm

for any m ≥ 1, and ια0,αm
is a closed T1 inclusion (Lemma 2.4), so

ym is a closed point of Xαm
for m = 1, . . . , n. Then since ιαm,αn

is closed (again by Lemma 2.4),
ιαm,αn

(ym) is closed in Xαn
for m = 1, . . . , n, precisely the desired result.

Now, we have shown that every subset of K is closed in Xµ. Then jµ : Xµ → colimX is a
closed and injective (this follows by Corollary 2.6 if µ < λ, and if µ = λ, Xµ = colimX, in which
case jµ is the identity), so every subset of S := jµ(K) is closed in colimX. Note that

S = {jµ(ιαn,µ(yn))}∞n=1 = {jαn
(yn)}∞n=1 = {xn}∞n=1 ⊆ f(A),

Then for n = 1, 2, . . ., define Un := f(A) \ (S \ {xn}). Each Un is open in f(A) (as S \ {xn}
is a subset of S and is therefore closed in colimX, thus in f(A)), and the collection {Un}∞n=1

forms an infinite open cover of f(A). Finally, this open cover has no finite subcover, as Un is
the only element of the cover containing xn for n = 1, 2, . . .. Hence we reach a contradiction,
as f is continuous and A is compact, so f(A) is compact, but we have found an infinite open
cover of f(A) which has no finite subcover. Thus, there must have existed soem α < λ with
f(A) ⊆ jα(Xα) in the first place, in which case, as we have shown, this implies f factors through
Xα via a continuous map, as desired. □

Proposition 2.9 (Hovey 2.4.5 & 2.4.6). The class of injective maps (resp. inclusions, closed T1

inclusions) in Top is saturated.

Proof. We know these three classes are closed under transfinite compositions (Corollary 2.5), so
it suffices to show these classes are closed under pushouts and retracts. In what follows, fix a
pushout diagram and a retract diagram of the following form:

A C A B A

B D C D C

i

g

f

j⌜

f g

j

h k

i j

(i) First, consider the pushout diagram, and suppose i is injective. We wish to show j is
injective. Suppose for the sake of a contradiction there existed distinct points c1, c2 ∈ C
such that j(c1) = j(c2). Define h : C → {1, 2, 3} mapping c1 7→ 1, c2 7→ 2, and every
other point in C maps to 3. Define k : B → {1, 2, 3} to map every point in i(f−1(c1))
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to 1, every point in i(f−1(c2)) to 2, and every other point to 3. We may give {1, 2, 3}
the indiscrete topology so that h and k are continuous. Then clearly h ◦ f = k ◦ i, so
there exists a map ℓ : D → {1, 2, 3} such that ℓ ◦ j = h and ℓ ◦ g = k. But we reach a
contradiction, as ℓ(j(c1)) = ℓ(j(c2)), but h(c1) ̸= h(c2).

Now, consider the retract diagram, and suppose i is injective. We wish to show j is
injective. Suppose a1, a2 ∈ A such that j(a1) = j(a2). Then h(j(a1)) = h(j(a2)), and
h ◦ j = i ◦ f , so i(f(a1)) = i(f(a2)). Note that since g ◦ f = idA, necessarily f is injective,
and we are assuming i is injective, so i(f(a1)) = i(f(a2)) =⇒ a1 = a2.

(ii) First, consider the pushout diagram, and suppose i is an inclusion. We wish to show j is
an inclusion. We know j is injective by (i). It remains to show that given U ⊆ C open,
there exists V ⊆ D open with j−1(V ) = U . Given U ⊆ C open, f−1(U) is open in A as f
is continuous, and i is an inclusion, so there exists W ⊆ B open with i−1(W ) = f−1(U).
Now let S = {0, 1} be the Sierpinski space with open sets {∅, {1}, {0, 1}}. Define h : C →
S to map every point of U to 1, and every other point to 0. Define k : B → S to map
every point of W to 1, and every other point to 0. Clearly h and k are continuous. We
claim h ◦ f = k ◦ i. Indeed, let a ∈ A. If a ∈ f−1(U), then h(f(a)) = 1, as f(a) ∈ U ,
while k(i(a)) = 1, as a ∈ U = i−1(W ), so i(a) ∈ W . Conversely, if a /∈ f−1(U), then
h(f(a)) = 0 as f(a) /∈ U , while k(i(a)) = 0, as a /∈ i−1(W ) meaning i(a) /∈ W . Hence,
there exists a (unique) continuous map ℓ : D → S with ℓ ◦ j = h and ℓ ◦ g = k. Define
V := ℓ−1(1), which is open in D as {1} is open in S. Then finally, we claim j−1(V ) = U .
Indeed,

j−1(V ) = j−1(ℓ−1(1)) = (ℓ ◦ j)−1(1) = h−1(1) = U.

Thus j is an inclusion, as desired.
Now, consider the retract diagram, and suppose i is an inclusion. We wish to show j

is an inclusion. We know j is injective by (i). It remains to show that given U ⊆ A open,
there exists V ⊆ C open with j−1(V ) = U . Then since g is continuous, g−1(U) is open
in B, and i is an inclusion, so there exists W ⊆ D open with i−1(W ) = g−1(U). Then

j−1(h−1(W )) = (h◦j)−1(W ) = (i◦f)−1(W ) = f−1(i−1(W )) = f−1(g−1(U)) = (g◦f)−1(U) = U,

and h−1(W ) is open as h is continuous and W is open, so we are done, as if we set
V := h−1(W ), then we have shown V is open in C and j−1(V ) = U , as desired.

(iii) First, consider the pushout diagram, and suppose i is a closed T1 inclusion. We wish
to show j is a closed T1 inclusion. We know j is an inclusion by (ii). It remains to
show j is closed, and every point of D \ j(C) is closed in D. First, we show closedness.
Let V ⊆ C be a closed set, we want to show j(C) is closed in D. By definition of
the colimit topology on D (which is the final topology on D induced by j and g by
the discussion at the beginning of this chapter), in order to show j(V ) is closed in D
it suffices to show that j−1(j(V )) is closed in C and g−1(j(V )) is closed in B. Since j
is injective by (i), j−1(j(V )) = V , which we have defined to be closed in A. Now, to
show g−1(j(V )) is closed, since i is a closed map and f is continuous, it suffices to show
i(f−1(V )) = g−1(j(V )). First of all, let b ∈ i(f−1(V )), then b = i(a) for some a ∈ A
with f(a) ∈ V . Then g(b) = g(i(a)) = j(f(a)) ∈ j(V ), so b ∈ g−1(j(V )). Conversely,
let b ∈ g−1(j(V )), so g(b) = j(c) for some c ∈ V . Then by the explicit description of
the colimit in Set and the fact that the forgetful functor Top→ Set preserves colimits,
there exists a ∈ A such that f(a) = c and i(a) = b. Then in particular, f(a) = c ∈ V ,
so a ∈ f−1(V ), so b ∈ i(f−1(V )) as desired. Hence, j is indeed a closed map. It remains
to show that for all d ∈ D \ j(C), d is a closed point in D. Given d ∈ D \ j(C), by
the explicit characterization of the colimit topology, it suffices to show that j−1(d) and
g−1(d) are closed in C and B, respectively. First of all, j−1(d) = ∅, which is closed. Now,
since d is not in the image of j, d is not in the image of g ◦ i = j ◦ f , so g−1(d) ⊆ B \ i(A).



THE STANDARD MODEL STRUCTURE ON SPACES 19

Thus since i is a closed T1 inclusion, in order to show g−1(d) is closed, it suffices to show
that g−1(d) is a singleton. Suppose for the sake of a contradiction there existed distinct
points x, y ∈ B with g(x) = g(y) = d. Define h : C → {1, 2, 3} to map every point to
3. Define k : B → {1, 2, 3} to map x 7→ 1, y 7→ 2, and every other point in B maps to
3. Endow {1, 2, 3} with the indiscrete topology so that h and k are continuous. Note
h ◦ f = k ◦ i: given a ∈ A, since x, y ∈ g−1(d) ⊆ B \ i(A), i(a) does not equal x or y,
thus k(i(a)) = 3 = h(f(a)). Hence by the definition of the colimit, there exists a map
ℓ : D → X such that ℓ◦g = k and ℓ◦j = h. Then we reach a contradiction, as k(x) ̸= k(y)
but ℓ(g(x)) = ℓ(g(y)) = ℓ(d). Hence, g−1(d) /∈ i(A) must have been a singleton in the
first place, meaning g−1(d) is closed in B as desired.

Now, consider the retract diagram, and suppose i is a closed T1 inclusion. We wish to
show j is a closed T1 inclusion. We know j is an inclusion by (ii). It remains to show
j is closed, and every point of C \ j(A) is closed in C. First, we show closedness. Let
V ⊆ A be closed. First, we claim j(V ) = h−1(i(g−1(V ))). Given c ∈ j(V ), c = j(a)
for some a ∈ V , in which we have h(c) = h(j(a)) = i(f(a)), and g(f(a)) = a ∈ V , so
f(a) ∈ g−1(V ), meaning h(c) ∈ i(g−1(V )), so c ∈ h−1(i(g−1(V ))). Conversely, given
c ∈ h−1(i(g−1(V ))), so h(c) = i(b) for some b ∈ B with g(b) ∈ V . Then

c = k(h(c)) = k(i(b)) = j(g(b)) ∈ j(V ),

as desired. Thus, we have shown j(V ) = h−1(i(g−1(V ))).Note that since V ⊆ A is
closed and g is continuous, g−1(V ) is closed in B. Since i is a closed map, i(g−1(V ))
is closed in D. Finally, since h is continuous, h−1(i(g−1(V ))) = j(V ) is closed in C, as
desired. It remains to show that for all c ∈ C \ j(A) that c is a closed point in C. Given
c ∈ C \ j(A), note that h(c) /∈ i(B), as if h(c) = i(b) for some b ∈ B, then we would have
c = k(h(c)) = k(i(b)) = j(g(b)), yet we chose c not in the image of j. Hence, since i is a
closed T1 inclusion, and h(c) is not in the image of i, h(c) is a closed point in D. Then
note that since k ◦ h = idC , h is injective, so c = h−1(h(c)) is a closed point, as it is the
preimage of the closed set {h(c)} along the continuous map h. □

Lemma 2.10 (Hovey 2.4.8). W∩T is closed under transfinite compositions, where T denotes the
class of closed T1 inclusions.

Proof. Let λ be an ordinal, and let X : λ → Top be a λ-sequence such that for all β + 1 < λ,
the map Xβ → Xβ+1 belongs to W ∩ T. Let j : X → Xλ be a colimit cone for X. By
Corollary 2.5, we know that j0 : X → Xλ is a closed T1 inclusion, so it remains to show that
πn(j0, x0) : πn(X0, x0)→ πn(Xλ, j0(x0)) is an isomorphism for all n ≥ 0 and x0 ∈ X0.

First we show surjectivity. Suppose we are given x0 ∈ X0 and a continuous map f : (Sn, ∗)→
(Xλ, j0(x0)). Since Sn is compact, by □ Oops, I left

this unfin-
ished. Hon-
estly I don’t
really want
to type out
this argument,
leaving for
now.

Proposition 2.11. The domains of I ′ (resp. J) are small relative to I ′-cell.

Proof. By Lemma 2.7, every space is small relative to the inclusions, and in particular every
space is small relative to the class T of closed T1 inclusions. Hence, it suffices to show that
J-cell, I ′-cell ⊆ T. We showed above in Proposition 2.9 that T is closed under transfinite com-
position and pushouts, and clearly every map in I ′ and J is a closed T1 inclusion, so the desired
result follows. □

Lemma 2.12 (Hovey Lemma 2.4.4). The weak equivalences in Top are closed under retracts and
satisfy 2-of-3 axiom (so that in particular the weak equivalences form a subcategory, as clearly
identities are weak equivalences).

Proof. First we show that weak equivalences satisfy 2-of-3. Let f : X → Y and g : Y → Z be
continuous functions of topological spaces.
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First of all, suppose f and g are both weak equivalences. Then by functoriality of πn, since
πn(f, x) and πn(g, f(x)) are isomorphisms for all x ∈ X, πn(g ◦ f, x) = πn(g, f(x)) ◦ πn(f, x) is
likewise an isomorphism for all x ∈ X, so that g ◦ f is a weak equivalence.

Now, suppose that g ◦ f and g are weak equivalences. Pick a point x ∈ X. We wish to show
that πn(f, x) : πn(X,x)→ πn(Y, f(x)) is an isomorphism for all n ≥ 0. We know that πn(g ◦f, x)
is an isomorphism, and πn(g, f(x)) is an isomorphism, say with inverse, φ, so that

φ ◦ πn(g ◦ f, x) = φ ◦ πn(g, f(x)) ◦ πn(f, x) = πn(f, x)

is an isomorphism, as it is a composition of isomorphisms.
Now, suppose that g ◦ f and f are weak equivalences. Pick a point y ∈ Y . Since π0(f) is an

isomorphism, there exists a point x ∈ X such that f(x) belongs to the path component containing
y, so that there exists some α : I → Y with α(0) = f(x) and α(1) = f(y). Then consider the
following diagram

πn(Y, y) πn(Z, g(y))

πn(Y, f(x)) πn(Z, g(f(x)))

πn(g,y)

πn(g,f(x))

where the left arrow is the isomorphism given by conjugation by the path α, and the right arrow
is the isomorphism given by conjugation by the path g ◦ α. It is tedious yet straightforward
to verify that the diagram commutes. Furthermore, we know that πn(f, x) and πn(g ◦ f, x) =
πn(g, f(x)) ◦ πn(f, x) are isomorphisms for all n, so that if we denote the inverse of πn(f, x) by
φ, then

πn(g ◦ f, x) ◦ φ = πn(g, f(x)) ◦ πn(f, x) ◦ φ = πn(g, f(x))

is an isomorphism, as it is given as a composition of isomorphisms. Hence, the top arrow must
likewise be an isomorphism, precisely the desired result.

The fact that weak equivalences in Top are closed under retracts is entirely straightforward
and follows from the fact that the functors πn preserve retract diagrams and that the class of
isomorphisms in any category is closed under retracts. □

Proposition 2.13 (Hovey 2.4.9). ⊥(J⊥) ⊆W ∩ ⊥(I
′
⊥).

Proof. First, in order to show ⊥(J⊥) ⊆ ⊥(I
′
⊥), It suffices to show that J ⊆ I ′-cell, as by

Corollary 1.16 we would have J ⊆ ⊥(I
′
⊥), and

J ⊆ ⊥(I
′
⊥) =⇒ ⊥(J⊥) ⊆ ⊥((⊥(I

′
⊥))⊥) = ⊥(I

′
⊥),

where the implication and equality both follow from Lemma 1.11 which gives that

A ⊆ B =⇒ ⊥(A⊥) ⊆ ⊥(B⊥) and (⊥(A⊥))⊥ = A⊥.

Now, to show J ⊆ I ′-cell, first consider the composition jn : Dn ↪→ Sn ↪→ Dn+1, where the first
map is the pushout

Sn−1 Dn

Dn Sn

⌜

obtained by gluing two copies of Dn along their boundary, and the second map map is simply
the inclusion Sn ↪→ Dn+1, which can be written as the pushout

Sn Sn

Dn+1 Dn+1

⌜
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It can be seen that jn includes Dn as a hemisphere of Sn = ∂Dn+1 ⊆ Dn+1. Note that Dn× I is
homeomorphic to Dn+1 (“smooth out” the sharp edges of the cylinder) via some homeomorphism
hn : Dn+1 → Dn×I, and in particular, we may define hn so that hn(jn(D

n)) = Dn×{0} ⊆ Dn×I
by squashing the hemisphere jn(D

n) to be one of the faces of the cylinder Dn × I, in which case
hn ◦ jn : Dn → Dn × I is precisely the inclusion Dn ↪→ Dn × I sending x 7→ (x, 0), and since
jn ∈ I ′-cell, hn ◦ jn ∈ I ′-cell by Lemma 1.13.

Now, we claim that ⊥(J⊥) ⊆W. First note that by Corollary 1.18 and Proposition 2.11, every
map in ⊥(J⊥) is a retract of an element of J-cell. Furthermore, we know that W is closed under
retracts (Lemma 2.12), so that it suffices to show that J-cell ⊆ W. We claim it suffices to show
that pushouts of maps in J are weak equivalences. Supposing we had shown this, we would have
that pushouts of maps in J are weak equivalences and T1 inclusions, as J ⊆ T and T is saturated
by Proposition 2.9. Then by Lemma 2.10, we would have that J-cell ⊆ W ∩ T, precisely the
desired result.

Now, let S be the class of inclusions of a deformation retract, i.e., those injective maps
i : A→ B such that there exists a homotopy H : B × I → B with H(i(a), t) = i(a) for all a ∈ A,
H(b, 0) = b for all b ∈ B, and H(b, 1) = i(r(b)) for all b ∈ B for some map r : B → A.3 We will
show the following:

(1) S ⊆W.
It suffices to show that if i : A → B belongs to S, then i is a homotopy equivalence.

Indeed, given i : A → B, let H : B × I → B and r : B → A be a homotopy and retract
satisfying the conditions above. Then in particular, H is a homotopy between idB (at
time t = 0) and i ◦ r (at time t = 1). It remains to show that r ◦ i = idA. First of all,
note that since H(b, 1) = i(r(b)) for all b ∈ B, we have H(i(a), 1) = i(r(i(a))). Yet, we
also know that H(i(a), t) = i(a) for all t ∈ I, so i(r(i(a))) = i(a), and i is injective so
r(i(a)) = a.

(2) J ⊆ S.
For n ≥ 0, let jn : Dn ↪→ Dn × I denote the inclusion of Dn as the subset Dn × {0}.

Define a deformation retract H : Dn × I × I → Dn × I by (x, s, t) 7→ (x, s(1 − t)).
Then indeed we have H(jn(x), t) = H(x, 0, t) = (x, 0) = jn(x) for all x ∈ Dn, H(x, t, 0) =
(x, t(1−0)) = (x, t) for all (x, t) ∈ Dn×I, and H(x, t, 1) = (x, t(1−1)) = (x, 0) = jn(r(x))
for all (x, t) ∈ Dn × I, where r : Dn × I → Dn is the projection onto time zero sending
(x, t) 7→ (x, 0). Finally, jn is clearly injective. Thus, indeed J ⊆ S.

(3) S is closed under pushouts.
Suppose we are given a pushout diagram

A C

B D

i

g

f

j⌜

where i ∈ S. Then we wish to show j in S. First, we know j is injective by Proposition 2.9.
Now, we look to construct H and r. Let K : B×I → B and r′ : B → A be maps satisfying
the conditions for i to be an inclusion of a deformation retract.

We wish to define a homotopy H : D× I → D. Then I is a locally compact Hausdorff
space (in particular, it is compact and Hausdorff), so that the functor −×I : Top→ Top

3Hovey has a typo here, namely, he does not specify that i must be injective. Without this specification, his
assertion fails. For example, take A = R2, B = R, i(x, y) = x, H(b, t) = b, and r(b) = (b, 0). Then i is an inclusion
of a deformation retract according to Hovey’s “definition,” but i is not injective and r is not a retract.
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preserves colimits (Proposition 2.1), meaning the following is a pushout diagram:

A× I C × I

B × I D × I

f×idI

j×idI⌜i×idI

g×idI

Then by the universal property of the pushout, there is a map H : D×I → D (the dashed
line) such that the following diagram commutes

A× I C × I

B × I D × I C

B D

f×idI

j×idI⌜i×idI

g×idI

π1

K
g

jH

Now, note r′ ◦ i = idA. Indeed, given a ∈ A, we have i(r′(i(a))) = K(i(a), t) = i(a) and i
is injective, so that r′(i(a)) = a, as desired. Hence, there exists a unique map r : D → C
(the dashed line) such that the following diagram commutes:

A C

B D

A C

f

j⌜i

g

r′

f

r

Now we claim that our constructions H and r endow j with the structure of an inclusion
of a deformation retract, as desired. First c ∈ C, we wish to show H(j(c), t) = j(c) for
all t. Indeed, we have

H(j(c), t) = H(j × idI(c, t)) = j(π1(c, t)) = j(c).

Given d ∈ D, we want to show H(d, 0) = d. By the explicit description of the colimit in
Top, we know that every element of D is in the image of either j or g. If d = j(c) for
some c, then we have just shown H(d, 0) = H(j(c), 0) = j(c) = d, as desired. On the
other hand, if d = g(b) for some b ∈ B we have

H(d, 0) = H(g × idI(b, 0)) = g(K(b, 0)) = g(b) = d.

Finally, we claim that H(d, 1) = j(r(d)) for all d ∈ D. If d = j(c) for some c ∈ C, then
we have

H(d, 1) = H(j(c), 1) = j(c) = j(r(j(c))) = j(r(d)),

as desired. On the other hand, if d = g(b) for some b ∈ B, then

H(d, 1) = H(g × idI(b, 1)) = g(K(b, 1)) = g(i(r′(b))) = j(f(r′(b))) = j(r(g(b))) = j(r(d)). □

Proposition 2.14 (Hovey 2.4.10). I ′⊥ ⊆W ∩ J⊥

Proof. First, by Proposition 2.13 we know ⊥(J⊥) ⊆ ⊥(I
′
⊥), and this implies I ′⊥ ⊆ J⊥, as by

Lemma 1.11 we have

⊥(J⊥) ⊆ ⊥(I
′
⊥) =⇒ J⊥ = (⊥(J⊥))⊥ ⊇ (⊥(I

′
⊥))⊥ = I ′⊥.
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Thus, it suffices to show that I ′⊥ ⊆W. Now, suppose p : (X,x0)→ (Y, p(x0)) is in I ′⊥. We wish
to show that the map πn(p, x0) : πn(X,x0)→ πn(Y, p(x0)) is an isomorphism for all n.

First we show that πn(p, x0) is surjective. Let g : (Sn, ∗) → (Y, p(x0)) be a map. Then we
have the following commutative diagram

∗ X

Sn Y
g

p

where the top arrow picks out x0. Note that the map ∗ → Sn may be realized as a pushout
of the diagram Dn ← Sn−1 → ∗, so that ∗ → Sn belongs to I ′-cell, and therefore ⊥(I

′
⊥) by

Corollary 1.16, and p ∈ I ′⊥, so ∗ → Sn has the left lifting property against p. Thus, the above
diagram has a lift f : (Sn, ∗)→ (X,x0) such that p ◦ f = g, so that πn(p, x0)([f ]) = [p ◦ f ] = [g],
as desired.

Finally, we show that πn(p, x0) is injective. Suppose we have two maps f, g : (Sn, ∗)→ (X,x0)
such that p ◦ f and p ◦ g represent the same element of πn(Y, p(x0)). Then there is a homotopy
H : Sn × I → Y such that for all s ∈ Sn and t ∈ I, H(s, 0) = p(f(s)), H(s, 1) = p(g(s)), and
H(∗, t) = p(x0). By the universal property of the quotient, H induces a map H : Sn ∧ I+ :=
(Sn × I)/(∗ × I) sending the equivalence class [s, t] 7→ H(s, t). Hence, the following diagram
commutes:

Sn ∨ Sn X

Sn ∧ I+ YH

f∨g

p

where the left arrow is an element of I ′-cell, as it may be obtained by attaching an n + 1 cell
to Sn ∨ Sn (when n = 0, the attachning map is obvious; when n > 0, the attaching map is the
quotient map Sn ↠ Sn ∨ Sn obtained by collapsing the equator). Thus, by similar reasoning
to above there exists a lift K : Sn ∧ I+ → X. Then if we define K to be the composition

Sn × I ↠ Sn ∧ I+
K−→ X, this gives us the desired homotopy between f and g: given s ∈ Sn and

t ∈ I, we have K(s, 0) = K([s, 0]) = f(s), K(s, 1) = K([s, 1]) = g(s), and K(∗, t) = K([∗, t]) =
K([∗, 0]) = (∗) = x0. □

In what follows, given continuous maps p : X → Y and i : A → B, let Q(i, p) : XB →
P (i, p) := XA ×Y A Y B denote the map obtained by the universal property of the fiber product
(pullback) via the maps i∗ ◦ p∗ : XB → Y A and p∗ ◦ i∗ : XB → Y A.

Lemma 2.15 (Hovey 2.4.11). Suppose p : X → Y is a map. Then p ∈ I ′⊥ if and only if the map
Q(i, p) : XB → P (i, p) := XA ×Y A Y B is surjective for all maps i : A → B in I ′. In particular,
if Q(i, p) ∈W ∩ J⊥ for all i ∈ I ′, then p ∈ I ′⊥.

Proof. First of all, suppose p ∈ I ′⊥, and let i : A→ B in I ′. We wish to show Q(i, p) is surjective.
We know the forgetful functor Top→ Set preserves limits, so by the explicit description of limits

in Set and Remark 1.7, the set P (i, p) is given by pairs of maps (A
α−→ X,B

β−→ Y ) such that
p◦α = β ◦ i, and the map Q(i, p) : XB → P (i, p) sends an arrow ℓ : B → X to the pair (ℓ◦ i, p◦ℓ).
Now to see Q(i, p) is surjective, suppose there exists (α, β) ∈ P (i, p) so that the following diagram
commutes:

A X

B Y

α

pi

β
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Then because p ∈ I ′⊥ and i ∈ I ′, there exists a lift ℓ : B → X, in which case Q(i, p)(ℓ) =
(ℓ ◦ i, p ◦ ℓ) = (α, β), as desired.

Conversely, suppose that we are given a map p : X → Y such that Q(i, p) is surjective for
all maps i : A → B in I ′. Then we wish to show that p ∈ I ′⊥. Let i : A → B belong to I ′,
and suppose we are given a lifting problem of the same form as the above diagram. Then since
p ◦ α = β ◦ i, the pair (α, β) is an element of P (i, p). Since Q(i, p) is surjective, there exists an
arrow ℓ : B → X such that Q(i, p)(ℓ) = (α, β). But Q(i, p)(ℓ) = (ℓ ◦ i, p ◦ ℓ), so ℓ ◦ i = α and
p ◦ ℓ = β, meaning ℓ is a lift, as desired. Thus indeed p ∈ I ′⊥.

Thus, in order to show the second part, it suffices to show that any map belonging to W∩ J⊥
is surjective. To see this, suppose q : W → Z belongs to W ∩ J⊥, and let z ∈ Z. Pick any
point w ∈ W , and consider the map β : S0 = {0, 1} → Z sending 0 7→ q(w) and 1 7→ z. Then
since q ∈W, the homomorphism π0(q, w) : (W,w)→ (Z, q(w)) is surjective, so there exists a map
α : (S0, 0)→ (W,w) and a homotopy H : S0×I → Z such that H(s, 0) = q(α(s)), H(s, 1) = β(s),
and H(0, t) = q(w) for all s ∈ S0 and t ∈ I. Then we have a lifting problem of the following form

∗ W

I Z

0

H(1,−)

α(1)

q

H(1,−) is continuous as it is H♭(1), where H♭ : S0 →W I is the adjoint of H : S0 × I →W (see
the proof of Proposition 2.1 and recall how to construct the adjoint of a morphism given the unit
and counit of the adjunction). Then we may identify the left arrow with the map D0 → D0 × I,
in which case since q ∈ J⊥ there exists a lift ℓ : I → W such that q ◦ ℓ = H(1,−). In particular,
z = β(1) = H(1, 1) = q(ℓ(1)), so that z does belong to the image of q, as desired. □

Lemma 2.16 (Hovey 2.4.13). Suppose p : X → Y belongs to J⊥ and i : Sn−1 ↪→ Dn belongs to
I ′. Then the map Q(i, p) belongs to J⊥.

Proof. Suppose we are given a map j : Dm×{0} ↪→ Dm× I belonging to J and a lifting problem
of the following form

Dm XDn

Dm × I P (i, p) = XSn−1 ×Y Sn−1 Y Dn

j Q(i,p)

In order to show that any such diagram has a lift, by Proposition 2.1 and Proposition 1.22, since
Sn−1 and Dn are locally compact Hausdorff, it suffices to show that any lifting problem of the
following form has a solution:

Dm × {0} ×Dn
∐

Dm×{0}×Sn−1 Dm × I × Sn−1 X

Dm × I ×Dn Y

p(i×idDn ,idDm×I×i)

For ease of notation, write f for the map on the left. Since p ∈ J⊥, in order to show that the
diagram has a lift, it suffices to show that f ∈ ⊥(J⊥). Note that since ⊥(J⊥) is characterized
by a lifting property, it is closed under composition with isomorphisms (homeomorphisms). Fur-
thermore, since J ⊆ ⊥(J⊥), it suffices to show that f is homeomorphic to the second map in the
factorization Dm+n ∼= Dm+n × {0} ↪→ Dm+n × I ∈ J . Note that f = idDm × g, where

g : {0} ×Dn
∐

{0}×Sn−1

I × Sn−1 = ({0} ×Dn) ∪ (I × Sn−1) ↪→ I ×Dn.
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The space ({0} ×Dn) ∪ (I × Sn−1) may be obtained by removing one of the ends of the hollow
cylinder ∂(I × Dn). By flattening the edges of this cylinder-with-a-missing-end, we get a disk
homeomorphic to Dn. Thus g is homeomorphic to the map {0} × Dn ↪→ I × Dn, so that
f = idDm × g is homeomorphic to the inclusion Dm+n × {0} ↪→ Dm+n × I as desired. □

Corollary 2.17 (Hovey 2.4.14). Every topological space is fibrant, i.e., given a space X, the

unique map X → ∗ is an element of J⊥. In particular, the map XDn → XSn−1

belongs to J⊥
for all n ≥ 0.

Proof. Suppose we are given a space X, a map j : Dn ↪→ Dn × I belonging to J , and a lifting
problem of the following form

Dn X

Dn × I ∗

j

f

Then it is straightforward to see that the composition f ◦ π1, where π1 : Dn × I → Dn is the
canonical projection, is a lift for the diagram. Hence, X is indeed fibrant as desired. Now,
suppose we are given a map i : Sn−1 ↪→ Dn belonging to I ′. It is straightforward to check that
the following is a pullback diagram:

XSn−1 ∗Dn

XSn−1 ∗Sn−1

⌟

where the top arrow sends a map f : Sn−1 → X to unique arrow Dn → ∗ (it is continuous as ∗Dn

is a singleton). Hence, by Lemma 2.16 the map XDn → P (i, p) = XSn−1

sending f : Dn → X to

the composition Sn−1 → Dn f−→ X is fibrant (belongs to J⊥), as desired. □

Lemma 2.18 (Hovey 2.4.15). If p : X → Y is a weak equivalence (belongs to W), then pD
n

:
XDn → Y Dn

is also a weak equivalence.

Proof. We claim it suffices to show that the map jZ : Z → ZDn

that takes z to the constant map
at z is a homotopy equivalence for all spaces Z. Indeed, supposing this had been shown, then
consider the following diagram

X Y

XDn

Y Dn

jX

p∗

p

jY

First of all, it is straightforward to see that this diagram commutes. By 2-of-3 (Lemma 2.12) we
know that p∗◦jX = jY ◦p is a weak equivalence, if jY is, as p is a weak equivalence. Furthermore, if
jX is a weak equivalence, then by 2-of-3 again, it would have to hold that p∗ is a weak equivalence,
as desired.

Now, we claim that jZ is homotopy equivalence. First of all, it is well-defined, as given z ∈ Z,
jZ(z) : D

n → Z is a constant map, which is always continuous, so that jZ(z) is indeed an element
of ZDn

. Now, to see that jZ is continuous, recall the topology on ZDn

is that with subbasis given
by sets of the form

S(K,U) := {f ∈ Top(Dn, Z) : f(K) ⊆ U}
for K ⊆ Dn compact and U ⊆ Z open. Hence in order to show jZ is continuous, it suffices to
show j−1

Z (S(K,U)) is open in Z for all K ⊆ Dn compact and U ⊆ Z open. Indeed, we have

j−1
Z (S(K,U)) = {z ∈ Z : jZ(z)(K) ⊆ U} = {z ∈ Z : z ∈ U} = U,
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which is open as desired. Hence, jZ is well-defined and continuous. Now, it remains to show that
it is a homotopy equivalence. Define the map qZ : ZDn → Z to be evaluation at 0 (where by 0
we mean the origin in Dn), so that qZ(f : Dn → Z) := f(0). To see this is continuous, note that
given U ⊆ Z open, that

q−1
Z (U) := {f ∈ Top(Dn, Z) : f(0) ∈ U} = S({0}, U),

which is open in ZDn

, as desired. Now, the composite qZ ◦ jZ is the identity, and the composite
jZ ◦qZ is homotopic to the identity by the homotopy H : ZDn×I → ZDn

defined by H(f, t)(x) =
f(tx). It remains to showH is continuous. To do so, it suffices to show thatH♯ : ZDn×I×Dn → Z
mapping (f, t, x) 7→ f(tx) is continuous, as Dn is locally compact Hausdorff and H is the adjoint
of H♯ (Proposition 2.1). Note that H♯ factors as

ZDn × I ×Dn ZDn ×Dn Z

(f, t, x) (f, tx) f(tx),

and this composition is continuous as the first arrow is the product of idZDn with the multiplica-
tion map I ×Dn → Dn sending (t, x) 7→ tx, and the second arrow is simply the evaluation map,
which is also continuous (see the proof of Proposition 2.1). □

Lemma 2.19 (Hovey 2.4.16). Suppose p : X → Y belongs to J⊥, and x ∈ X. Let F := p−1(p(x)),
and i : F ↪→ X denote the inclusion. Then there is a long exact sequences

· · · πn+1(Y, p(x))

πn(F, x) πn(X,x) πn(Y, p(x))

πn−1(F, x) · · · π0(Y, p(x))

πn(i,x)

πn(p,x)

dn+1

dn

πn−1(i,x) π0(p,x)

which is natural with respect to commutative squares

X X ′

Y Y ′

p′p

where p, p′ ∈ J⊥. Here dn is a group homomorphism πn(Y, p(x))→ πn−1(F, x) when n > 1.

Proof. First, fix n ≥ 0. We define dn+1 : πn+1(Y, p(x)) → πn(F, x). To start with, fix a home-
omorphism kn : Dn+1 ∼= Dn × I, and write ∂kn : ∂(Dn+1) = Sn ∼= ∂(Dn × I) for the re-
striction of kn to ∂(Dn+1) = Sn. We may represent an element of πn+1(Y, p(x)) by a map
f : (Dn+1, Sn)→ (Y, p(x)). Then we may construct the following lifting problem

Dn X

Dn × I Y
f◦k−1

n

p

d7→x

d 7→(d,0)

Since p ∈ J⊥, this diagram has a lift Dn × I → X. Let ℓ denote the restriction of this lift
to ∂(Dn × I). Note that the image of ℓ is contained in F , as given z ∈ ∂(Dn × I), we have
p(ℓ(z)) = f(k−1

n (z)) Then define dn+1f := ℓ|∂(Dn×I) ◦ ∂kn. First, note that dn+1f : Sn → FFinish or
add reference
(Hatcher The-
orem 4.41)

□
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Lemma 2.20. Let f : X → Y be a continuous map between compact Hausdorff spaces. Then
given A ⊆ X and B ⊆ Y , A and B are closed iff they are compact, in which case f−1(B) and
f(A) are both closed and compact

Proof. nLab reference □ Add proper
reference
or complete
proof

Lemma 2.21. Let Z be a topological space. Then for all n ≥ 0 and for all points ∗ ∈ Sn, consider
the pullback square

(6)
Sn−1 Dn

∗ Sn

i

jh

k

⌟

Explicitly, when n > 0, j is the quotient map which collapses the boundary of Dn to the point ∗
to obtain Sn. Then the following is a pullback diagram

(7)

ZSn

ZDn

Z∗ ZSn−1

j∗

i∗k∗

h∗

where each arrow is the pullback of the corresponding arrow in diagram (6). In particular, for all
∗ ∈ Sn, the evaluation map ZSn → Z sending α 7→ α(∗) belongs to J⊥.

Proof. Note if n = 0, diagram (7) is obviously a pullback diagram, as it simply becomes

ZS0 ∼= Z × Z Z∗ ∼= Z

Z∗ ∼= Z Z∅ ∼= ∗

(Check the arrows are the obvious ones under these isomorphisms). Now suppose n > 0 in
diagram (7). First of all the diagram clearly commutes as (6) does: given f ∈ ZSn

, i∗(j∗(f)) =
f ◦ j ◦ i = f ◦ k ◦ h = h∗(k∗(f)). Now, given arrows f : W → ZDn

and g : W → Z∗ such that
i∗(f) = h∗(g) (so f ◦i = g◦h), we would like to show there exists a unique map ℓ : W → ZSn

such
that j∗(ℓ) = f and k∗ ◦ ℓ = g. For each w ∈W , we have a map f(w) : Dn → Z and g(w) : ∗ → Z
such that f(w) ◦ i = g(w) ◦ h which make the following diagram commute

Sn−1 Dn

∗ Sn

Z

i

jh

k

⌟

ℓ(w)

f(w)

g(w)

Hence by the universal property of the pushout, there is a unique map ℓ(w) : Sn → Z such that
ℓ(w) ◦ j = f(w) and ℓ(w) ◦ k = g(w). In this way, we have defined a function ℓ : W → ZSn

, and

https://ncatlab.org/nlab/show/closed+subspaces+of+compact+Hausdorff+spaces+are+equivalently+compact+subspaces
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furthermore it clearly makes the following diagram commute

(8)

W

ZSn

ZDn

Z∗ ZSn−1

ℓ

j∗

i∗k∗

h∗

f

g

Furthermore, it is not difficult to see that ℓ is the unique function W → ZSn

which makes this
diagram commute, as necessarily given w ∈ W , we know ℓ(w) : Sn → Z is a continuous map
satisfying ℓ(w) ◦ j = f(w) and ℓ(w) ◦ k = g(w), but since (6) is a pushout diagram, ℓ(w) is the
unique such map, so ℓ must be defined as we defined it. It remains to show that ℓ is continuous.
By definition of the compact-open topology, it suffices to show that for all compact K ⊆ Sn and
open U ⊆ Z that

ℓ−1(S(K,U)) = {w ∈W : ℓ(w)(K) ⊆ U}

is open in W . Note it suffices to show that ℓ(w)(K) = f(w)(j−1(K)) and that j−1(K) is compact,
as if this were true then we would have

ℓ−1(S(K,U)) = {w ∈W : ℓ(w)(K) ⊆ U} = {w ∈W : f(w)(j−1(K)) ⊆ U} = f−1(S(j−1(K), U)),

and since f is continuous, if j−1(K) is compact then S(j−1(K), U) is open in ZDn

, so we would
have that ℓ−1(S(K,U)) = f−1(S(j−1(K), U)) is open, as desired.

Now, to see ℓ(w)(K) = f(w)(j−1(K)), note that given z ∈ ℓ(w)(K), there exists x ∈ K ⊆ Sn

such that ℓ(w)(x) = z, then since j is surjective we may pick d ∈ Dn such that j(d) = x ∈
K. Furthermore, z = ℓ(w)(x) = ℓ(w)(j(d)) = f(w)(d). Thus it follows z ∈ f(w)(j−1(K)).
Conversely, suppose we are given z ∈ f(w)(j−1(K)), so there exists d ∈ Dn such that z =
f(w)(d) = ℓ(w)(j(d)), and j(w) ∈ K. Thus it follows z ∈ ℓ(w)(K), as desired.

Finally, to see j−1(K) is compact, note that j is a continuous map between compact Hausdorff
spaces, so that j−1(K) is compact in Dn by Lemma 2.20. Thus, we have shown that diagram (7)
is a pullback square.

Now, by Corollary 2.17 we know that the map i∗ : ZDn → ZSn−1

in diagram (7) belongs to
J⊥. Thus since J⊥ is characterized by a right lifting property, it is straightforward to see it is
closed under taking pullbacks, so that the left map in the diagram k∗ : ZSn → Z∗ also belongs
to J⊥. Under the obvious isomorphism Z∗ ∼= Z, this is precisely the evaluation map ZSn → Z
sending α 7→ α(∗). □

Lemma 2.22 (Hovey 2.4.17). Suppose p : X → Y is a weak equivalence. Then pS
n

: XSn → Y Sn

is a weak equivalence for all n ≥ −1, where S−1 = ∅.

Proof. We give a proof by induction on n. In the case n = −1, since S−1 = ∅, XS−1

= Y S−1

= ∗
(because ∅ is initial in Top), so that the map pS

−1

: ∗ → ∗ is a homeomorphism (because ∗ is
terminal) and in particular a weak-equivalence.

Now, supposing we have shown pS
n−1

is a weak equivalence for some n ≥ 0, we wish to show
pS

n

is likewise. Let i : Sn−1 → Dn and j : Dn → Sn be as in diagram (6). Pick a point α ∈ XSn

,

let FX denote the fiber of iX : XDn → XSn−1

containing α◦j and let FY denote the corresponding

fiber of iY : Y Dn → Y Sn−1

containing p ◦ α ◦ j. Let ιX and ιY denote the inclusions FX ↪→ XDn

and FY ↪→ Y Dn

, respectively. Then we first claim that FX → FY is a weak equivalence. First,
we claim π0(p∗) : π0(FX) → π0(FY ) is a bijection. Since p : X → Y is a weak equivalence, it
suffices to show that π0(FX) ∼= πn(X,α(∗)) and π0(FY ) ∼= πn(Y, p(α(∗))), and that the following
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diagram commutes under these bijections

(9)

π0(FX) π0(FY )

πn(X,α(∗)) πn(Y, p(α(∗)))

∼=
∼=

∼=

An element of FX = i−1
X (iX(α ◦ j)) is a map β : Dn → X satisfying β ◦ i = α ◦ j ◦ i. Unravelling

definitions, α ◦ j ◦ i : Sn−1 → X is simply the constant map on α(∗), so that if β : Dn → X
belongs to FX , it must send every element in Sn−1 to α(∗). Thus β fits into the pushout square

(6), so there exists a unique map β̃ : Sn → X such that the composition Dn j−→ Sn β̃−→ X is

equal to β, and β̃(∗) = α(∗). Conversely, an element of XSn

sending ∗ to α(∗) gives rise to an
element of FX by precomposition with j. Thus we may identify FX (as a set) with the subset
[Sn, X]∗ ⊆ XSn

containing those maps β : Sn → X such that β(∗) = α(∗). We further claim
the assignment hX : FX → [Sn, X]∗ is a homeomorphism, where [Sn, X]∗ is endowed with the
subspace topology inherited from XSn

. Given K ⊆ Sn compact and U ⊆ X open, we want to
show that h−1

X (S(K,U)) is open in FX . Indeed,

h−1
X (S(K,U)∩[Sn, X]∗) = {β ∈ FX : β̃(K) ⊆ U} (∗)

= {β ∈ FX : β(j−1(K)) ⊆ U} = S(j−1(K), U)∩FX ,

where (∗) follows by the fact that j : Dn ↠ Sn is surjective and β̃ ◦ j = β. Note j−1(K) is
compact in Dn by Lemma 2.20, so that hX is continuous as desired. Conversely to see hX is open
note a similar argument yields

hX(S(K,U) ∩ FX) = S(j(K), U) ∩ [Sn, X]∗

for all K ⊆ Dn compact and U ⊆ X open (continuous maps preserve open maps), so that hX is a

continuous open bijection, therefore a homeomorphism, as desired. Thus the assignment β 7→ β̃
yields a bijection between π0(FX) → π0([S

n, X]∗) = πn(X,α(∗)), i.e., the path component of

some β ∈ FX ⊆ XDn

is sent to the equivalence class of the map β̃ : Sn → X in πn(X,α(∗)).
An entirely analagous argument yields a bijection π0(FY ) → πn(Y, p(α(∗))) sending the path
component of a map γ : Dn → Y in FY to the equivalence class of the unique continuous map
γ̃ : (Sn, ∗)→ (Y, p(α(∗))) such that γ = γ̃ ◦ j. Finally, to see diagram (9) commutes, unravelling

the maps we have that the top composition sends [β] ∈ π0(FX) to [p̃ ◦ β], while the bottom

composition sends it to [p ◦ β̃]. By definition, p̃ ◦ β is the unique continuous dashed line Sn → Y
such that the following diagram commutes

Sn−1 Dn

∗ Sn

Y

i

jh

k
p◦β

p(α(∗))

⌟
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Then it follows by commutativity of the following diagram that p ◦ β̃ = p̃ ◦ β

Sn−1 Dn

∗ Sn

X

Y

i

jh

k
β

α(∗) β̃

⌟

p

p◦β

p(α(∗))

Thus since diagram (9) commutes, we get that π0(p∗) : π0(FX) → π0(FY ) is a bijection, as
desired.

Now, we would like to show that πm(p∗, α ◦ j) : πm(FX , α ◦ j)→ πm(FY , p◦α ◦ j) is a bijection
for all m > 0. Consider the square

XDn

Y Dn

XSn−1

Y Sn−1

iX

pSn−1

pDn

iY

It commutes, as given f ∈ XDn

, iY (p
Dn

(f)) = iY (p ◦ f) = p ◦ f ◦ i = p ◦ iX(f) = pS
n−1

(iX(f)).
Furthermore, iX and iY belong to J⊥ by Corollary 2.17. Thus by Lemma 2.19, for all m > 0 the
following diagram commutes and both rows are exact

πm+1(X
Dn

, αj) πm+1(X
Sn−1

, αji) πm(FX , αj) πm(XDn

, αj) πm(XSn−1

, αji)

πm+1(Y
Dn

, pαj) πm+1(Y
Sn−1

, pαji) πm(FY , pαj) πm(Y Dn

, pαj) πm(Y Sn−1

, pαji)

dm πm(ιX ,αj) πm(iX ,αj)πm+1(iX ,αj)

πm+1(p
Dn

,αj) πm+1(p
Sn−1

,αji)

πm+1(iY ,αj) dm πm(ιY ,αj) πm(iY ,αj)

πm(pDn
,αj) πm(pDn

,αj) πm(pSn−1
,αji)

Now per our induction hypothesis, the second and fifth vertical arrows are isomorphisms. The
first and fourth vertical arrows are isomorphisms by Lemma 2.18. Then it follows by the five-
lemma that the middle arrow is an isomorphism (in the case m = 1, this argument still works, a
simple diagram chase yields that the five-lemma does hold in the more general setting when the
last three elements of each row are non-abelian groups). Thus the restriction pD

n

: FX → FY is
indeed a weak equivalence, as desired.

In what follows, fix a basepoint ∗ ∈ Sn, and given a space Z let kZ : ZSn → Z be the evaluation

map sending α 7→ α(∗). let F̃X and F̃Y be the fibers of kX : XSn → X and kY : Y Sn → Y
containing α and p ◦ α, respectively. Let FX and FY be defined as above (so pD

n

: FX → FY is
a weak equivalence, as we have just shown). Finally, let jZ : ZSn → ZDn

be the pullback map
induced by j : Dn → Sn. Consider the following square

(10)

F̃X FX

F̃Y FY

pSn

jY

jX

pDn

First of all, it clearly commutes, as given β ∈ F̃X , so β : Sn → X is continuous and β(∗) = α(∗),
we have pD

n

(jX(β)) = pD
n

(β ◦ j) = p ◦ β ◦ j = jY (p ◦ β) = jY (p
Sn

(β)). Now we claim the
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restriction jX |F̃X
: F̃X → FX is a homeomorphism. First, note explicitly that

FX = i−1
X (iX(α ◦ j)) = {γ ∈ XDn

: iX(γ) = iX(α ◦ j)} = {γ ∈ XDn

: γ ◦ i = α ◦ j ◦ i},

and

F̃X = k−1
X (kX(α)) = {β ∈ XSn

: kX(β) = kX(α)} = {β ∈ XSn

: β(∗) = α(∗)}.
Now we show jX : F̃X → FX is a homeomorphism by considering the cases n = 0 and n > 0
separately.

In the case n = 0, given γ ∈ XD0

, γ ◦ i and α ◦ j ◦ i are maps S−1 → X, and S−1 = ∅ is initial
in Top, so γ ◦ i = α◦j ◦ i for all γ ∈ XD0

. Thus FX = XD0

= X∗. On the other hand, an element

of F̃X is a function β : S0 = {∗, 0} → X such that β(∗) = α(∗), and the map jX : F̃X → FX

sends β 7→ β ◦ j. Here j is simply the map D0 → {∗, 0} including the unique point 0 ∈ D0 to 0.

Thus under the isomorphism X∗ ∼= X, jX : F̃X → FX = X∗ ∼= X simply sends β 7→ β(0). Now,

clearly this map is a bijection, as an element of F̃X is a function {∗, 0} → X which must send
∗ to α(∗) and there are no restrictions on where 0 is sent. To see this map is open, let K ⊆ S0

compact (so K is any subset of S0 as S0 is a finite space) and let U ⊆ X be open. Then we would

like to show jX(S(K,U) ∩ F̃X) is open in X. Note

jX(S(K,U) ∩ F̃X) = {β(0) : β ∈ X{∗,0}, β(∗) = α(∗), β(K) ⊆ U} =


U ∗ ∈ K,α(∗) ∈ U

∅ ∗ ∈ K,α(∗) /∈ U

U ∗ /∈ K.

Hence jX(S(K,U) ∩ F̃X) is indeed open. Thus in the case n = 0, jX : F̃X → FX is an open
bijection, and it is continuous bijection, so it is a homeomorphism.

Now, suppose that n > 0, we would like to show jX : F̃X → FX is a continuous open bijection.
It is continuous by definition. Since j is an epimorphism when n > 0, jX is clearly injective, as

given β, β′ ∈ F̃X , if jX(β) = jX(β′), then β ◦ j = β′ ◦ j =⇒ β = β′, as desired. To see it
is surjective, first note that j ◦ i : Sn−1 → Dn → Sn sends everything to the basepoint ∗, by
commutativity of (6). Thus elements of FX are maps γ : Dn → X such that γ ◦ i : Sn−1 ↪→
Dn → X sends everything to α(∗), i.e., γ restricts to the constant map on α(∗) on the boundary
∂Dn = Sn−1. Thus γ fits into the following diagram

Sn−1 Dn

∗ Sn

X

i

jh

k

⌟ γ

α(∗)
γ̃

so there is a (unique) dashed arrow γ̃ : Sn → X such that jX(γ̃) = γ̃ ◦ j = γ, and γ̃ ∈ F̃X as
(γ̃(∗)) = α(∗). Thus jX is surjective. It remains to show that jX is open. Let K ⊆ Sn be compact

and U ⊆ X open. Then we would like to show that jX(S(K,U) ∩ F̃X) is open in FX . It suffices

to show that jX(S(K,U)∩ F̃X) = FX ∩S(j−1(K), U), as j−1(K) is compact (Lemma 2.20). First

of all, let β ∈ S(K,U) ∩ F̃X . We would like to show jX(β) = β ◦ j ∈ S(j−1(K), U). Indeed,
β ◦ j(j−1(K)) = β(j(j−1(K))) = β(K) ⊆ U , where the second equality follows by the fact that j

is surjective (since n > 0). Conversely, suppose we are given γ ∈ S(K,U) ∩ F̃X . Then by what
we have shown above, γ = γ̃ ◦ j for a unique γ̃ ∈ XSn

with γ̃(∗) = α(∗), and γ(j−1(K)) ⊆ U , so
that γ̃(j(j−1(K))) = γ̃(K) ⊆ U (where again equality follows since j is surjective when n > 0).

Thus γ̃ ∈ S(K,U) ∩ F̃X and satisfies jX(γ̃) = γ̃ ◦ j = γ, so γ ∈ jX(S(K,U) ∩ F̃X). Hence, jX is
a continuous open bijection, thus a homeomorphism, as desired.
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By an entirely analagous argument, jY : F̃Y → FY is a homeomorphism. Thus looking at
diagram (10), since the top and bottom arrows are isomorphisms and we have shown the right
arrow is a weak equivalence, it follows by two applications of 2-of-3 (Lemma 2.12) that the left

arrow pS
n

: F̃X → F̃Y is a weak equivalence as well.
Now we will finally show that πm(pS

n

, α) : πm(XSn

, α)→ πm(Y Sn

, p ◦ α) is a bijection for all
m ≥ 0. Consider the square

XSn

Y Sn

X Y

pSn

kYkX

p

This diagram commutes, as given β ∈ XSn

, kY (p∗(β)) = kY (p ◦ β) = p(β(∗)) = p(kX(β)). Re-

define ιX and ιY to be the inclusions F̃X ↪→ XSn

and F̃Y ↪→ Y Sn

, respectively. Since kX and kY
are fibrations, by Lemma 2.19, for all m ≥ 0 the following diagram commutes and the rows are
exact

πm+1(X,α(∗)) πm(F̃X , α) πm(XSn

, α) πm(X,α(∗)) πm−1(F̃X , α)

πm+1(Y, p(α(∗))) πm(F̃Y , pα) πm(Y Sn

, pα) πm(Y, p(α(∗))) πm−1(F̃Y , pα)

dm πm(ιX ,α) dm−1

πm+1(p,α(∗)) πm(pSn
,α) πm(p,α(∗)) πm−1(p

Sn
,α)

πm(ιY ,pα) πm(kY ,pα) dm−1

πm(pSn
,α)

dm

πm(kX ,α)

(in the case m = 0, the final entry of each row becomes 0). We know the second and fifth vertical
arrows are isomorphisms by what we have shown above. Since p is a weak equivalence a priori, we
also have that the first and fourth vertical arrows are isomorphisms. Thus by the five-lemma we
get that the middle arrow is an isomorphism when m > 0 (again, a simple diagram chase yields
that the five-lemma still works here in the case m = 1, as it holds in the more general setting
where the first and second entries are abelian groups, the third and fourth entries are non-abelian
groups, and the last entry of each row is a set), as desired.

Finally, we claim that π0(p
Sn

, α) : π0(X
Sn

, α)→ π0(Y
Sn

, p◦α) is a bijection. to see surjectivity,
we first claim that π0(X

Sn

) ∼= [Sn, X] where [A,Z] means the set of (free) homotopy classes of
maps from A to Z. Indeed, connected components of XSn

are precisely the homotopy classes
of maps Sn → X. In order to see this, first suppose β, γ ∈ XSn

are in the same connected
component, so there exists a continuous map f : I → XSn

with f(0) = β and f(1) = γ. Since
Sn is LCH (in particular it is compact and Hausdorff), we get an induced map F : I × Sn → X
(Proposition 2.1). Unravelling how this map is defined, we have F (t, s) = f(t)(s) for all t ∈ I
and s ∈ Sn, so that in particular F (0, s) = β(s) and F (1, s) = γ(s), so F defines a homotopy
between β and γ, as desired. Conversely, given two maps β, γ : Sn → X and a homotopy
H : I × Sn → X with H(0, s) = α(s) and H(1, s) = β(s) for all s ∈ Sn, again since Sn is LCH,
H induces a map h : I → XSn

, and h(0) = H(0,−) = β and h(1) = H(1,−) = γ, so that β and
γ belong to the same path-component of XSn

, as desired. Similarly, π0(Y
Sn

) ∼= [Sn, Y ]. Thus
in order to show π0(p

Sn

) is surjective it suffices to show that the map p∗ : [Sn, X] → [Sn, Y ]
is surjective. Indeed, let [f ] ∈ [Sn, Y ]. Since π0(p) is bijective, there exists x ∈ X and a path
γ : I → Y with γ(0) = p(x) and γ(1) = f(∗). Then conjugation by γ yields an isomorphism
hγ : πn(Y, f(∗)) ∼= πn(Y, p(x)) which preserves free homotopy equivalence, and since p is a weak
equivalence there exists [g] ∈ πn(Y, p(x)) and a homotopy between hγ([f ]) and [p◦g], so it follows
[p ◦ g] is homotopic to [f ] as desired (see a similar discussion in the proof of Lemma 2.12).

Finally, to see injectivity of π0(p
Sn

), suppose we are given two points β, γ ∈ XSn

which are
sent to the same path component of Y Sn

. Note that our choice of α ∈ XSn

all the way above
was arbitrary, and we could have chosen α to be any element, so WLOG let’s assume α = γ.
Then chasing [α] and [β] around the third square in the diagram above yields that p sends α(∗)
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and β(∗) to the same path component in Y , and π0(p) is a bijection, so it follows that α(∗)
and β(∗) belong to the same path component of X. [α(∗)] = [β(∗)] is the distinguished point of

π0(X,α(∗)), so by exactness it follows that there exists β̃ ∈ F̃X such that [β] = [ιX(β̃)]. Then

chasing β̃ around the second square yields that [p(β̃)] is in the “kernel” of π0(ιY , pα), so that

there exists δ ∈ π1(Y, p(α(∗))) such that d0([δ]) = [p(β̃)]. Then since π1(p, α(∗)) is surjective,
there further exists δ′ ∈ π1(X,α(∗)) such that [p(δ′)] = [δ]. Finally, chasing δ′ around the first
arrow yields that

π0(p
Sn

, α)(d0([δ
′])) = d0([p(δ

′)]) = d0([δ]) = [p(β̃)] = π0(p
Sn

, α)([β̃]),

and π0(p
Sn

, α) : π0(F̃X , α) → π0(F̃Y , pα) is a bijective, so that d0([δ
′]) = [β̃]. Thus it follows by

exactness that [β] = π0(ιX , α)([β̃]) = π0(ιX , α)(d0([δ
′])) = [α], as desired. □

Proposition 2.23 (Hovey 2.4.18). Suppose we have a pullback square

W X

Z Y

q

g

f

p
⌜

in Top, where p ∈ J⊥ and g is a weak equivalence. Then f is a weak equivalence.

Proof. Let w ∈ W , and define F := q−1(q(w)), F ′ := p−1(p(f(w))). We claim f restricts to
a homeomorphism F → F ′. First of all clearly given a ∈ F = q−1(q(w)) (so q(a) = q(w)),
note p(f(a)) = g(q(a)) = g(q(w)) = p(f(w)) so that f(a) ∈ p−1(p(f(w))), as desired. To see it is
injective, suppose we are given a, b ∈ F such that f(a) = f(b). Then consider the maps h : ∗ → X
and k : ∗ → Z sending ∗ 7→ f(a) and ∗ 7→ q(w), respectively. Clearly

p(h(∗)) = p(f(a)) = g(q(a)) = g(q(w)) = g(k(∗)).
Then by the universal property of the pullback, there exists a unique map ℓ : ∗ → W such
that f ◦ ℓ = h and q ◦ ℓ = k. It is straightforward to see that ℓ : ∗ 7→ a is a solution as
q(ℓ(∗)) = q(a) = q(w) = k(∗) and f(ℓ(∗)) = f(a) = h(∗). Yet ℓ : ∗ 7→ b is also a solution, as
q(ℓ(∗)) = q(b) = q(w) = k and f(ℓ(∗)) = f(b) = f(a) = h(∗). Thus we must have had a = b in
the first place. To see it is surjective, suppose we are given x ∈ F ′ = p−1(p(f(w))). Consider the
maps h : ∗ → X and k : ∗ → Z sending ∗ 7→ x and ∗ 7→ q(w), respectively. Clearly

p(h(∗)) = p(x) = p(f(w)) = g(q(w)) = g(k(∗)),
so that by the universal property of the pullback there exists a map ℓ : ∗ →W such that f ◦ ℓ = h
and q ◦ ℓ = k. Then ℓ(∗) ∈ F = q−1(q(w)), as q(ℓ(∗)) = k(∗) = q(w), and f(ℓ(∗)) = h(∗) = x.
Thus we have found an element ℓ(∗) ∈ F such that f(ℓ(∗)) = x, so f : F → F ′ is surjective, as
desired.

Finally, it remains to show that f is open. By how limits are defined in Top (see the discussion
at the beginning of this section), we know that W is in bijection with the space {(z, x) ∈ Z ×X :
g(z) = p(x)}. In particular, there exists z0 ∈ Z and x0 ∈ X such that w corresponds to the point
(z0, x0) ∈ Z×X under this bijection (so g(z0) = p(x0)). Furthermore, under this bijection q and f
are simply the restriction of the projection maps Z×X → Z and Z×X → X, respectively, and the
topology on W has subbasis given by sets of the form q−1(U) and f−1(V ) for U ⊆ Z and V ⊆ X
open. In particular, F has subbasis given by sets of the form q−1(U)∩F and f−1(V )∩F for U ⊆ Z
and V ⊆ X open. Now, in order to show f |F : F → F ′ is open, it suffices to show it sends elements
of the subbasis to open sets in F ′. First note that F = q−1(q(w)) = q−1(q(z0, x0)) = q−1(z0).
Then given U ⊆ Z open we have

f(q−1(U)∩F ) = f(q−1(U)∩ q−1(z0)) = f(q−1(U ∩{z0})) =

{
f(q−1(z0)) = f(F )

(∗)
= F ′ z0 ∈ U

∅ z0 /∈ U,
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where (∗) follows by the fact that f(F ) = F ′, as we showed above. Either way, f(q−1(U) ∩ F ) is
open, as desired. Conversely, given an open set V ⊆ X, we have

f(f−1(V ) ∩ F )
(∗)
= f(f−1(V ) ∩ f−1(F ′)) = f(f−1(V ∩ F ′))

(∗)
= V ∩ F,

where both ocurrences of (∗) follow by the fact that f |F : F → F ′ is a bijection, as we showed
above. By definition of the subspace topology, V ∩ F ′ is open in F ′. Hence we have shown f
sends elements of the subbasis of F to open sets in F ′, so it follows that f |F : F → F ′ is properly
open as desired.

Now, we apply Lemma 2.19 to get that for n > 0 the following diagram commutes and both
rows are exact:

πn+1(Z, q(w)) πn(F,w) πn(W,w) πn(Z, q(w)) πn−1(F,w)

πn+1(Y, p(f(w)) πn(F
′, f(w)) πn(X, f(w)) πn(Y, p(f(w)) πn−1(F

′, f(w))

dn πn(ι,w) πn(q,w) dn−1

πn+1(g,q(w)) πn(f,w) πn(f,w) πn(g,q(w)) πn−1(f,w)

dn πn(ι
′,f(w)) πn(p,f(w)) dn−1

Furthermore, by the five lemma, since g is a weak equivalence and f |F : F → F ′ is a homeo-
morphism, it follows that the middle arrow is an isomorphism. It remains to show that π0(f) :
π0(W )→ π0(X) is an isomorphism. The same argument using the trick of changing the basepoint
in the last paragraph of the proof of Lemma 2.22 works to show that π0(f) is injective. To see
it is surjective, suppose x ∈ X. Then since g is a weak equivalence, there is a point z ∈ Z and a
path γ : I → Y from p(x) to g(z). In other words, the following diagram commutes

D0 ∼= ∗ X

D0 × I ∼= I Y

x

γ

p

Since the left arrow belongs to J and p ∈ J⊥, there is a lift ℓ : I → X such that ℓ(0) = x and
p(ℓ(t)) = γ(t) for all t ∈ I. In particular, p(ℓ(1)) = γ(1) = g(z), so that under the identification
W ∼= Z×Y X given above, there is a point (z, ℓ(1)) = w ∈W , and ℓ is a path between f(w) = ℓ(1)
and x, so that f does indeed hit the path component of x. Hence we have shown π0(f) is a
bijection, as desired. □

Proposition 2.24 (Hovey 2.4.12). W ∩ J⊥ ⊆ I ′⊥

Proof. Let p : X → Y belong to W ∩ J⊥. By Lemma 2.15, in order to show p ∈ I ′⊥ it suffices to
show the map Q(i, p) belongs to W ∩ J⊥ for all boundary inclusions i : Sn−1 ↪→ Dn for n ≥ 0.
Given such an i, consider the pullback diagram defining P (i, p) and Q(i, p)

XDn

P (i, p) Y Dn

XSn−1

Y Sn−1

Q(i,p)

f

Y iq

pSn−1

pDn

Xi ⌟

By Corollary 2.17, the right-hand vertical map (Y i) belongs to J⊥. By Lemma 2.22, the bottom

horizontal map (pS
n−1

) belongs to W. By Proposition 2.23 the top horizontal map (f) also
belongs to W. Finally using Lemma 2.18, we get that pD

n

also belongs to W, so that by 2-of-3
(Lemma 2.12), we get thatQ(i, p) belongs toW. Finally, Q(i, p) belongs to J⊥ by Lemma 2.16. □
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